Home > Statistical Methods calculators > Mean deviation, Quartile deviation, Decile deviation, Percentile deviation for ungrouped data example

Mean deviation, Coefficient of Mean deviation Example for ungrouped data ( Enter your problem )
  1. Mean deviation, Coefficient of Mean deviation Example
  2. Quartile deviation, Coefficient of Quartile deviation Example
  3. Decile deviation, Coefficient of Decile deviation Example
  4. Percentile deviation, Coefficient of Percentile deviation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

7. Geometric mean, Harmonic mean
(Previous method)
2. Quartile deviation, Coefficient of Quartile deviation Example
(Next example)

1. Mean deviation, Coefficient of Mean deviation Example





1. Calculate Mean deviation from the following data
`10,50,30,20,10,20,70,30`


Solution:
Mean deviation :
Mean `bar x=(sum x)/n`

`=(10+50+30+20+10+20+70+30)/8`

`=240/8`

`=30`

`x``|x - bar x| = |x - 30|`
1020
5020
300
2010
1020
2010
7040
300
------
240120


Mean deviation of Mean
`delta bar x = (sum |x - bar x|)/n`

`delta bar x = 120/8`

`delta bar x = 15`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=15/30`

`=0.5`


2. Calculate Mean deviation from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Mean deviation :
Mean `bar x=(sum x)/n`

`=(85+96+76+108+85+80+100+85+70+95)/10`

`=880/10`

`=88`

`x``|x - bar x| = |x - 88|`
853
968
7612
10820
853
808
10012
853
7018
957
------
88094


Mean deviation of Mean
`delta bar x = (sum |x - bar x|)/n`

`delta bar x = 94/10`

`delta bar x = 9.4`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=9.4/88`

`=0.1068`


3. Calculate Mean deviation from the following data
`73,70,71,73,68,67,69,72,76,71`


Solution:
Mean deviation :
Mean `bar x=(sum x)/n`

`=(73+70+71+73+68+67+69+72+76+71)/10`

`=710/10`

`=71`

`x``|x - bar x| = |x - 71|`
732
701
710
732
683
674
692
721
765
710
------
71020


Mean deviation of Mean
`delta bar x = (sum |x - bar x|)/n`

`delta bar x = 20/10`

`delta bar x = 2`


Coefficient of Mean deviation `=(delta bar x)/(bar x)`

`=2/71`

`=0.0282`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



7. Geometric mean, Harmonic mean
(Previous method)
2. Quartile deviation, Coefficient of Quartile deviation Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.