Home > Statistical Methods calculators > Sample Skewness, Kurtosis for ungrouped data example

Sample Skewness Example for ungrouped data ( Enter your problem )
  1. Formula & Example
  2. Sample Skewness Example
  3. Sample Kurtosis Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

1. Formula & Example
(Previous example)
3. Sample Kurtosis Example
(Next example)

2. Sample Skewness Example





1. Calculate Sample Skewness from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Skewness :
Mean `bar x=(sum x)/n`

`=(85+96+76+108+85+80+100+85+70+95)/10`

`=880/10`

`=88`

`x``(x - bar x)`
`= (x - 88)`
`(x - bar x)^2`
`= (x - 88)^2`
`(x - bar x)^3`
`= (x - 88)^3`
85-39-27
96864512
76-12144-1728
108204008000
85-39-27
80-864-512
100121441728
85-39-27
70-18324-5832
95749343
------------
880012162430


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(1216/9)`

`=sqrt(135.1111)`

`=11.6237`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=2430/(9*(11.6237)^3)`

`=2430/(9*1570.4951)`

`=0.1719`


2. Calculate Sample Skewness from the following data
`10,50,30,20,10,20,70,30`


Solution:
Skewness :
Mean `bar x=(sum x)/n`

`=(10+50+30+20+10+20+70+30)/8`

`=240/8`

`=30`

`x``(x - bar x)`
`= (x - 30)`
`(x - bar x)^2`
`= (x - 30)^2`
`(x - bar x)^3`
`= (x - 30)^3`
10-20400-8000
50204008000
30000
20-10100-1000
10-20400-8000
20-10100-1000
7040160064000
30000
------------
2400300054000


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(3000/7)`

`=sqrt(428.5714)`

`=20.702`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=54000/(7*(20.702)^3)`

`=54000/(7*8872.2715)`

`=0.8695`


3. Calculate Sample Skewness from the following data
`73,70,71,73,68,67,69,72,76,71`


Solution:
Skewness :
Mean `bar x=(sum x)/n`

`=(73+70+71+73+68+67+69+72+76+71)/10`

`=710/10`

`=71`

`x``(x - bar x)`
`= (x - 71)`
`(x - bar x)^2`
`= (x - 71)^2`
`(x - bar x)^3`
`= (x - 71)^3`
73248
70-11-1
71000
73248
68-39-27
67-416-64
69-24-8
72111
76525125
71000
------------
71006442


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(64/9)`

`=sqrt(7.1111)`

`=2.6667`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=42/(9*(2.6667)^3)`

`=42/(9*18.963)`

`=0.2461`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example
(Previous example)
3. Sample Kurtosis Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.