1. Calculate Sample Skewness from the following data
`85,96,76,108,85,80,100,85,70,95`Solution:Skewness :Mean `bar x=(sum x)/n`
`=(85+96+76+108+85+80+100+85+70+95)/10`
`=880/10`
`=88`
| `x` | `(x - bar x)` `=(x-88)` | `(x - bar x)^2` `=(x-88)^2` | `(x - bar x)^3` `=(x-88)^3` |
| 85 | -3 | 9 | -27 |
| 96 | 8 | 64 | 512 |
| 76 | -12 | 144 | -1728 |
| 108 | 20 | 400 | 8000 |
| 85 | -3 | 9 | -27 |
| 80 | -8 | 64 | -512 |
| 100 | 12 | 144 | 1728 |
| 85 | -3 | 9 | -27 |
| 70 | -18 | 324 | -5832 |
| 95 | 7 | 49 | 343 |
| --- | --- | --- | --- |
| `880` | `0` | `1216` | `2430` |
Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`
`=sqrt(1216/9)`
`=sqrt(135.1111)`
`=11.6237`
Sample Skewness `= (sum (x - bar x)^3)/((n-1)*S^3)`
`=2430/(9*(11.6237)^3)`
`=2430/(9*1570.4951)`
`=0.1719`
2. Calculate Sample Skewness from the following data
`10,50,30,20,10,20,70,30`Solution:Skewness :Mean `bar x=(sum x)/n`
`=(10+50+30+20+10+20+70+30)/8`
`=240/8`
`=30`
| `x` | `(x - bar x)` `=(x-30)` | `(x - bar x)^2` `=(x-30)^2` | `(x - bar x)^3` `=(x-30)^3` |
| 10 | -20 | 400 | -8000 |
| 50 | 20 | 400 | 8000 |
| 30 | 0 | 0 | 0 |
| 20 | -10 | 100 | -1000 |
| 10 | -20 | 400 | -8000 |
| 20 | -10 | 100 | -1000 |
| 70 | 40 | 1600 | 64000 |
| 30 | 0 | 0 | 0 |
| --- | --- | --- | --- |
| `240` | `0` | `3000` | `54000` |
Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`
`=sqrt(3000/7)`
`=sqrt(428.5714)`
`=20.702`
Sample Skewness `= (sum (x - bar x)^3)/((n-1)*S^3)`
`=54000/(7*(20.702)^3)`
`=54000/(7*8872.2715)`
`=0.8695`
3. Calculate Sample Skewness from the following data
`10,50,30,20,10,20,70,30`Solution:Skewness :Mean `bar x=(sum x)/n`
`=(10+50+30+20+10+20+70+30)/8`
`=240/8`
`=30`
| `x` | `(x - bar x)` `=(x-30)` | `(x - bar x)^2` `=(x-30)^2` | `(x - bar x)^3` `=(x-30)^3` |
| 10 | -20 | 400 | -8000 |
| 50 | 20 | 400 | 8000 |
| 30 | 0 | 0 | 0 |
| 20 | -10 | 100 | -1000 |
| 10 | -20 | 400 | -8000 |
| 20 | -10 | 100 | -1000 |
| 70 | 40 | 1600 | 64000 |
| 30 | 0 | 0 | 0 |
| --- | --- | --- | --- |
| `240` | `0` | `3000` | `54000` |
Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`
`=sqrt(3000/7)`
`=sqrt(428.5714)`
`=20.702`
Sample Skewness `= (sum (x - bar x)^3)/((n-1)*S^3)`
`=54000/(7*(20.702)^3)`
`=54000/(7*8872.2715)`
`=0.8695`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then