Home > Statistical Methods calculators > Sample Skewness, Kurtosis for ungrouped data example

Sample Skewness Example for ungrouped data ( Enter your problem )
  1. Formula & Example
  2. Sample Skewness Example
  3. Sample Kurtosis Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Construct an ungrouped frequency distribution table
  19. Construct a grouped frequency distribution table
  20. Maximum, Minimum
  21. Sum, Length
  22. Range, Mid Range
  23. Stem and leaf plot
  24. Ascending order, Descending order

1. Formula & Example
(Previous example)
3. Sample Kurtosis Example
(Next example)

2. Sample Skewness Example





1. Calculate Sample Skewness from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Skewness :
Mean `bar x=(sum x)/n`

`=(85+96+76+108+85+80+100+85+70+95)/10`

`=880/10`

`=88`

`x``(x - bar x)`
`= (x - 88)`
`(x - bar x)^2`
`= (x - 88)^2`
`(x - bar x)^3`
`= (x - 88)^3`
85-39-27
96864512
76-12144-1728
108204008000
85-39-27
80-864-512
100121441728
85-39-27
70-18324-5832
95749343
------------
880012162430


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(1216/9)`

`=sqrt(135.1111)`

`=11.6237`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=2430/(9*(11.6237)^3)`

`=2430/(9*1570.4951)`

`=0.1719`


2. Calculate Sample Skewness from the following data
`10,50,30,20,10,20,70,30`


Solution:
Skewness :
Mean `bar x=(sum x)/n`

`=(10+50+30+20+10+20+70+30)/8`

`=240/8`

`=30`

`x``(x - bar x)`
`= (x - 30)`
`(x - bar x)^2`
`= (x - 30)^2`
`(x - bar x)^3`
`= (x - 30)^3`
10-20400-8000
50204008000
30000
20-10100-1000
10-20400-8000
20-10100-1000
7040160064000
30000
------------
2400300054000


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(3000/7)`

`=sqrt(428.5714)`

`=20.702`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=54000/(7*(20.702)^3)`

`=54000/(7*8872.2715)`

`=0.8695`


3. Calculate Sample Skewness from the following data
`73,70,71,73,68,67,69,72,76,71`


Solution:
Skewness :
Mean `bar x=(sum x)/n`

`=(73+70+71+73+68+67+69+72+76+71)/10`

`=710/10`

`=71`

`x``(x - bar x)`
`= (x - 71)`
`(x - bar x)^2`
`= (x - 71)^2`
`(x - bar x)^3`
`= (x - 71)^3`
73248
70-11-1
71000
73248
68-39-27
67-416-64
69-24-8
72111
76525125
71000
------------
71006442


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(64/9)`

`=sqrt(7.1111)`

`=2.6667`



Sample Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`

`=42/(9*(2.6667)^3)`

`=42/(9*18.963)`

`=0.2461`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example
(Previous example)
3. Sample Kurtosis Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.