Home > Statistical Methods calculators > Mean deviation, Quartile deviation, Decile deviation, Percentile deviation for ungrouped data example

Quartile deviation, Coefficient of Quartile deviation Example for ungrouped data ( Enter your problem )
  1. Mean deviation, Coefficient of Mean deviation Example
  2. Quartile deviation, Coefficient of Quartile deviation Example
  3. Decile deviation, Coefficient of Decile deviation Example
  4. Percentile deviation, Coefficient of Percentile deviation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

1. Mean deviation, Coefficient of Mean deviation Example
(Previous example)
3. Decile deviation, Coefficient of Decile deviation Example
(Next example)

2. Quartile deviation, Coefficient of Quartile deviation Example





1. Calculate Quartile deviation from the following data
`10,50,30,20,10,20,70,30`


Solution:
Quartile deviation :
Arranging Observations in the ascending order, We get :
`10,10,20,20,30,30,50,70`

Here, `n = 8`

`Q_1 = ((n+1)/4)^(th)` value of the observation

`=(9/4)^(th)` value of the observation

`=(2.25)^(th)` value of the observation

`=2^(nd)` observation ` + 0.25 [3^(rd) - 2^(nd)]`

`=10 + 0.25 [20 - 10]`

`=10 + 0.25 (10)`

`=10 + 2.5`

`=12.5`



`Q_3 = ((3(n+1))/4)^(th)` value of the observation

`=((3*9)/4)^(th)` value of the observation

`=(6.75)^(th)` value of the observation

`=6^(th)` observation ` + 0.75 [7^(th) - 6^(th)]`

`=30 + 0.75 [50 - 30]`

`=30 + 0.75 (20)`

`=30 + 15`

`=45`



Inter Quartile range `=Q_3 - Q_1=45-12.5=32.5`

Quartile deviation `=(Q_3 - Q_1)/2=(45-12.5)/2=32.5/2=16.25`

Coefficient of Quartile deviation `=(Q_3 - Q_1)/(Q_3 + Q_1)=(45-12.5)/(45+12.5)=32.5/57.5=0.5652`


2. Calculate Quartile deviation from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Quartile deviation :
Arranging Observations in the ascending order, We get :
`70,76,80,85,85,85,95,96,100,108`

Here, `n = 10`

`Q_1 = ((n+1)/4)^(th)` value of the observation

`=(11/4)^(th)` value of the observation

`=(2.75)^(th)` value of the observation

`=2^(nd)` observation ` + 0.75 [3^(rd) - 2^(nd)]`

`=76 + 0.75 [80 - 76]`

`=76 + 0.75 (4)`

`=76 + 3`

`=79`



`Q_3 = ((3(n+1))/4)^(th)` value of the observation

`=((3*11)/4)^(th)` value of the observation

`=(8.25)^(th)` value of the observation

`=8^(th)` observation ` + 0.25 [9^(th) - 8^(th)]`

`=96 + 0.25 [100 - 96]`

`=96 + 0.25 (4)`

`=96 + 1`

`=97`



Inter Quartile range `=Q_3 - Q_1=97-79=18`

Quartile deviation `=(Q_3 - Q_1)/2=(97-79)/2=18/2=9`

Coefficient of Quartile deviation `=(Q_3 - Q_1)/(Q_3 + Q_1)=(97-79)/(97+79)=18/176=0.1023`


3. Calculate Quartile deviation from the following data
`73,70,71,73,68,67,69,72,76,71`


Solution:
Quartile deviation :
Arranging Observations in the ascending order, We get :
`67,68,69,70,71,71,72,73,73,76`

Here, `n = 10`

`Q_1 = ((n+1)/4)^(th)` value of the observation

`=(11/4)^(th)` value of the observation

`=(2.75)^(th)` value of the observation

`=2^(nd)` observation ` + 0.75 [3^(rd) - 2^(nd)]`

`=68 + 0.75 [69 - 68]`

`=68 + 0.75 (1)`

`=68 + 0.75`

`=68.75`



`Q_3 = ((3(n+1))/4)^(th)` value of the observation

`=((3*11)/4)^(th)` value of the observation

`=(8.25)^(th)` value of the observation

`=8^(th)` observation ` + 0.25 [9^(th) - 8^(th)]`

`=73 + 0.25 [73 - 73]`

`=73 + 0.25 (0)`

`=73 + 0`

`=73`



Inter Quartile range `=Q_3 - Q_1=73-68.75=4.25`

Quartile deviation `=(Q_3 - Q_1)/2=(73-68.75)/2=4.25/2=2.125`

Coefficient of Quartile deviation `=(Q_3 - Q_1)/(Q_3 + Q_1)=(73-68.75)/(73+68.75)=4.25/141.75=0.03`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Mean deviation, Coefficient of Mean deviation Example
(Previous example)
3. Decile deviation, Coefficient of Decile deviation Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.