2. Calculate Quartile deviation, Coefficient of Q.D., Interquartile range from the following data
`85,96,76,108,85,80,100,85,70,95`Solution:Quartile deviation :Arranging Observations in the ascending order, We get :
`70,76,80,85,85,85,95,96,100,108`
Here, `n=10`
`Q_1 = ((n+1)/4)^(th)` value of the observation
`=(11/4)^(th)` value of the observation
`=(2.75)^(th)` value of the observation
`=2^(nd)` observation `+0.75[3^(rd)-2^(nd)]`
`=76+0.75[80-76]`
`=76+0.75(4)`
`=76+3`
`=79`
`Q_3 = ((3(n+1))/4)^(th)` value of the observation
`=((3*11)/4)^(th)` value of the observation
`=(8.25)^(th)` value of the observation
`=8^(th)` observation `+0.25[9^(th)-8^(th)]`
`=96+0.25[100-96]`
`=96+0.25(4)`
`=96+1`
`=97`
InterQuartile range `=Q_3 - Q_1=97-79=18`
Quartile deviation `=(Q_3 - Q_1)/2=(97-79)/2=18/2=9` (Semi-InterQuartile range)
Coefficient of Quartile deviation `=(Q_3 - Q_1)/(Q_3 + Q_1)=(97-79)/(97+79)=18/176=0.1023`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then