4. Calculate Quartile deviation, Coefficient of Q.D., Interquartile range from the following data
`3,23,13,11,15,5,4,2`Solution:Quartile deviation :Arranging Observations in the ascending order, We get :
`2,3,4,5,11,13,15,23`
Here, `n=8`
`Q_1 = ((n+1)/4)^(th)` value of the observation
`=(9/4)^(th)` value of the observation
`=(2.25)^(th)` value of the observation
`=2^(nd)` observation `+0.25[3^(rd)-2^(nd)]`
`=3+0.25[4-3]`
`=3+0.25(1)`
`=3+0.25`
`=3.25`
`Q_3 = ((3(n+1))/4)^(th)` value of the observation
`=((3*9)/4)^(th)` value of the observation
`=(6.75)^(th)` value of the observation
`=6^(th)` observation `+0.75[7^(th)-6^(th)]`
`=13+0.75[15-13]`
`=13+0.75(2)`
`=13+1.5`
`=14.5`
InterQuartile range `=Q_3 - Q_1=14.5-3.25=11.25`
Quartile deviation `=(Q_3 - Q_1)/2=(14.5-3.25)/2=11.25/2=5.625` (Semi-InterQuartile range)
Coefficient of Quartile deviation `=(Q_3 - Q_1)/(Q_3 + Q_1)=(14.5-3.25)/(14.5+3.25)=11.25/17.75=0.6338`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then