2. Calculate Percentile deviation, Coefficient of P.D., Interpercentile range from the following data
`85,96,76,108,85,80,100,85,70,95`Solution:Percentile deviation :Arranging Observations in the ascending order, We get :
`70,76,80,85,85,85,95,96,100,108`
Here, `n=10`
`P_10 = ((10(n+1))/100)^(th)` value of the observation
`=((10*11)/100)^(th)` value of the observation
`=(1.1)^(th)` value of the observation
`=1^(st)` observation `+0.1[2^(nd)-1^(st)]`
`=70+0.1[76-70]`
`=70+0.1(6)`
`=70+0.6`
`=70.6`
`P_90 = ((90(n+1))/100)^(th)` value of the observation
`=((90*11)/100)^(th)` value of the observation
`=(9.9)^(th)` value of the observation
`=9^(th)` observation `+0.9[10^(th)-9^(th)]`
`=100+0.9[108-100]`
`=100+0.9(8)`
`=100+7.2`
`=107.2`
InterPercentile range `=P_90 - P_10=107.2-70.6=36.6`
Percentile deviation `=(P_90 - P_10)/2=(107.2-70.6)/2=36.6/2=18.3` (Semi-InterPercentile range)
Coefficient of Percentile deviation `=(P_90 - P_10)/(P_90 + P_10)=(107.2-70.6)/(107.2+70.6)=36.6/177.8=0.2058`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then