3. Calculate Percentile deviation, Coefficient of P.D., Interpercentile range from the following data
`73,70,71,73,68,67,69,72,76,71`Solution:Percentile deviation :Arranging Observations in the ascending order, We get :
`67,68,69,70,71,71,72,73,73,76`
Here, `n=10`
`P_10 = ((10(n+1))/100)^(th)` value of the observation
`=((10*11)/100)^(th)` value of the observation
`=(1.1)^(th)` value of the observation
`=1^(st)` observation `+0.1[2^(nd)-1^(st)]`
`=67+0.1[68-67]`
`=67+0.1(1)`
`=67+0.1`
`=67.1`
`P_90 = ((90(n+1))/100)^(th)` value of the observation
`=((90*11)/100)^(th)` value of the observation
`=(9.9)^(th)` value of the observation
`=9^(th)` observation `+0.9[10^(th)-9^(th)]`
`=73+0.9[76-73]`
`=73+0.9(3)`
`=73+2.7`
`=75.7`
InterPercentile range `=P_90 - P_10=75.7-67.1=8.6`
Percentile deviation `=(P_90 - P_10)/2=(75.7-67.1)/2=8.6/2=4.3` (Semi-InterPercentile range)
Coefficient of Percentile deviation `=(P_90 - P_10)/(P_90 + P_10)=(75.7-67.1)/(75.7+67.1)=8.6/142.8=0.0602`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then