Home > Numerical methods calculators > Numerical Interpolation using Gauss Backward formula example

7. Gauss Backward formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

2. Example-2
(Previous example)
8. Stirling's formula
(Next method)

3. Example-3





Find Solution using Gauss Backward formula
xf(x)
193912
194915
195920
196927
197939
198952

x = 1974
Finding f(2)


Solution:
The value of table for `x` and `y`

x193919491959196919791989
y121520273952

Gauss's backward difference interpolation method to find solution

`h=1949-1939=10`

Taking `x_0=1969` then `p=(x-x_0)/h=(x-1969)/10`

Now the central difference table is
`x``p=(x-1969)/10``y``Deltay``Delta^2y``Delta^3y``Delta^4y``Delta^5y`
1939-312
3
1949-2152
50
1959-12023
73-10
19690275-7
12-4
19791391
13
1989252


`x = 1974`

`p = (x - x_0)/h = (1974 - 1969)/10 = 0.5`

`y_0=27, Delta y_(-1)=7,Delta^2y_(-1)=5,Delta^3y_(-2)=3,Delta^4y_(-2)=-7,Delta^5y_(-3)=-10`

Gauss's backward interpolation formula is
`y_p=y_0+p Delta y_(-1) + ((p + 1)p)/(2!) * Delta^2y_(-1) + ((p + 1)p(p - 1))/(3!) * Delta^3y_(-2) + ((p + 2)(p + 1)p(p - 1))/(4!) * Delta^4y_(-2) + ((p + 2)(p + 1)p(p - 1)(p - 2))/(5!) * Delta^5y_(-3)`

`y_(0.5) = 27 + (0.5)(7) + ((0.5 + 1)(0.5))/(2) * (5) + ((0.5 + 1)(0.5)(0.5 - 1))/(6) * (3) + ((0.5 + 2)(0.5 + 1)(0.5)(0.5 - 1))/(24) * (-7) + ((0.5 + 2)(0.5 + 1)(0.5)(0.5 - 1)(0.5 - 2))/(120) * (-10)`

`y_(0.5)=27 +3.5 +1.875 -0.1875 +0.2734375 -0.1171875`

`y_(0.5)=32.3438`


Solution of Gauss's backward interpolation is `y(1974) = 32.3438`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
8. Stirling's formula
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.