Home > Numerical methods calculators > Numerical Interpolation using Everett's formula example

10. Everett's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

9. Bessel's formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
Everett's formula
`p = (x - x_0)/h`
`q = 1-p`
`y_p=qy_0 + (q(q^2 - 1^2))/(3!) * Delta^2y_(-1) + (q(q^2 - 1^2)(q^2 - 2^2))/(5!) * Delta^4y_(-2)+...+py_1 + (p(p^2 - 1^2))/(3!) * Delta^2y_(0) + (p(p^2 - 1^2)(p^2 - 2^2))/(5!) * Delta^4y_(-1)+...`

Examples
1. Find Solution using Everett's formula
xf(x)
11
1.11.049
1.21.096
1.31.140

x = 1.15


Solution:
The value of table for `x` and `y`

x11.11.21.3
y11.0491.0961.14

Everett method to find solution

`h=1.1-1=0.1`

Taking `x_0=1.1` then `p=(x-x_0)/h=(x-1.1)/0.1`

Now the central difference table is
`x``p=(x-1.1)/0.1``y``Deltay``Delta^2y``Delta^3y`
1-11
0.049
1.101.049-0.002
0.047-0.001
1.211.096-0.003
0.044
1.321.14


`x = 1.15`

`p = (x - x_0)/h = (1.15 - 1.1)/0.1 = 0.5`

`y_0=1.049, Delta y_0=0.047,Delta^2y_(-1)=-0.002`

Everett interpolation formula is
`y_p=qy_0 + (q(q^2 - 1^2))/(3!) * Delta^2y_(-1)+...+py_1 + (p(p^2 - 1^2))/(3!) * Delta^2y_(0)+...`

`y_(0.5) = (0.5)*(1.049) + ((0.5)(0.25 - 1))/(6) * (-0.002)+...+(0.5)*(1.096) + ((0.5)(0.25 - 1))/(6) * (-0.003)+...`

`y_(0.5)=0.5245 +0.000125 + 0.548 +0.0001875`

`y_(0.5)=1.07281`


Solution of Everett interpolation is `y(1.15) = 1.07281`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



9. Bessel's formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.