Home > Numerical methods calculators > Numerical Interpolation using Stirling's formula example

8. Stirling's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

7. Gauss Backward formula
(Previous method)
2. Example-2
(Next example)

1. Formula & Example-1





Formula
Stirling's formula
`p = (x - x_0)/h`
`y_p=y_0+p*(Delta y_0+Delta y_(-1))/2 + (p^2)/(2!) * Delta^2y_(-1) + (p(p^2 - 1^2))/(3!) * (Delta^3y_(-1)+Delta^3y_(-2))/2 + (p^2(p^2 - 1^2))/(4!) * Delta^4y_(-2) + ...`

Examples
1. Find Solution using Stirling's formula
xf(x)
2049225
2548316
3047236
3545926
4044306

x = 28


Solution:
The value of table for `x` and `y`

x2025303540
y4922548316472364592644306

Stirling's method to find solution

`h=25-20=5`

Taking `x_0=30` then `p=(x-x_0)/h=(x-30)/5`

The difference table is
`x``p=(x-30)/5``y``Deltay``Delta^2y``Delta^3y``Delta^4y`
20-249225
-909
25-148316-171
-1080-59
30047236-230-21
-1310-80
35145926-310
-1620
40244306


`x = 28`

`p = (x - x_0)/h = (28 - 30)/5 = -0.4`

`y_0=47236, Delta y_0=-1310,Delta^2y_(-1)=-230,Delta^3y_(-1)=-80,Delta^4y_(-2)=-21`

Stirling's formula is
`y_p=y_0+p*(Delta y_0+Delta y_(-1))/2 + (p^2)/(2!) * Delta^2y_(-1) + (p(p^2 - 1^2))/(3!) * (Delta^3y_(-1)+Delta^3y_(-2))/2 + (p^2(p^2 - 1^2))/(4!) * Delta^4y_(-2)`

`y_(-0.4) = 47236 + (-0.4)*((-1310-1080))/2 + ((0.16))/(2)*(-230) + ((-0.4)(0.16 - 1))/(6)*((-80-59))/2 + ((0.16)(0.16 - 1))/(24)*(-21)`

`y_(-0.4)=47236+478 -18.4 -3.892 +0.1176`

`y_(-0.4)=47691.8256`


Solution of Stirling's interpolation is `y(28) = 47691.8256`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



7. Gauss Backward formula
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.