Formula
    
        | Stirling's formula | 
    
        | `p = (x - x_0)/h` `y_p=y_0+p*(Delta y_0+Delta y_(-1))/2 + (p^2)/(2!) * Delta^2y_(-1) + (p(p^2 - 1^2))/(3!) * (Delta^3y_(-1)+Delta^3y_(-2))/2 + (p^2(p^2 - 1^2))/(4!) * Delta^4y_(-2) + ...`
 | 
Examples
1. Find Solution using Stirling's formula 
| x | f(x) | 
| 20 | 49225 | 
| 25 | 48316 | 
| 30 | 47236 | 
| 35 | 45926 | 
| 40 | 44306 | 
x = 28Solution:The value of table for `x` and `y`
| x | 20 | 25 | 30 | 35 | 40 | 
|---|
| y | 49225 | 48316 | 47236 | 45926 | 44306 | 
|---|
Stirling's method to find solution
`h=25-20=5`
Taking `x_0=30` then `p=(x-x_0)/h=(x-30)/5`
The difference table is
| `x` | `p=(x-30)/5` | `y` | `Deltay` | `Delta^2y` | `Delta^3y` | `Delta^4y` | 
| 20 | -2 | 49225 |  |  |  |  | 
|  |  |  | -909 |  |  |  | 
| 25 | -1 | 48316 |  | -171 |  |  | 
|  |  |  | -1080 |  | -59 |  | 
| 30 | 0 | 47236 |  | -230 |  | -21 | 
|  |  |  | -1310 |  | -80 |  | 
| 35 | 1 | 45926 |  | -310 |  |  | 
|  |  |  | -1620 |  |  |  | 
| 40 | 2 | 44306 |  |  |  |  | 
`x = 28`
`p = (x - x_0)/h = (28 - 30)/5 = -0.4`
`y_0=47236, Delta y_0=-1310,Delta^2y_(-1)=-230,Delta^3y_(-1)=-80,Delta^4y_(-2)=-21`
Stirling's formula is 
`y_p=y_0+p*(Delta y_0+Delta y_(-1))/2 + (p^2)/(2!) * Delta^2y_(-1) + (p(p^2 - 1^2))/(3!) * (Delta^3y_(-1)+Delta^3y_(-2))/2 + (p^2(p^2 - 1^2))/(4!) * Delta^4y_(-2)`
`y_(-0.4) = 47236 + (-0.4)*((-1310-1080))/2 + ((0.16))/(2)*(-230) + ((-0.4)(0.16 - 1))/(6)*((-80-59))/2 + ((0.16)(0.16 - 1))/(24)*(-21)`
`y_(-0.4)=47236+478 -18.4 -3.892 +0.1176`
`y_(-0.4)=47691.8256`
Solution of Stirling's interpolation is `y(28) = 47691.8256`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then