Home > Numerical methods calculators > Numerical Interpolation using Gauss Forward formula example

6. Gauss Forward formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)

2. Example-2





2. Find Solution using Gauss Forward formula
xf(x)
3102.4914
3202.5052
3302.5185
3402.5315
3502.5441
3602.5563

x = 337.5


Solution:
The value of table for `x` and `y`

x310320330340350360
y2.49142.50522.51852.53152.54412.5563

Gauss's forward method to find solution

`h=320-310=10`

Taking `x_0=330` then `p=(x-x_0)/h=(x-330)/10`

Now the central difference table is
`x``p=(x-330)/10``y``Deltay``Delta^2y``Delta^3y``Delta^4y``Delta^5y`
310-22.4914
0.0138
320-12.5052-0.0005
0.01330.0002
33002.5185-0.0003-0.0003
0.013-0.00010.0004
34012.5315-0.00040.0001
0.01260
35022.5441-0.0004
0.0122
36032.5563


`x = 337.5`

`p = (x - x_0)/h = (337.5 - 330)/10 = 0.75`

`y_0=2.5185, Delta y_0=0.013,Delta^2y_(-1)=-0.0003,Delta^3y_(-1)=-0.0001,Delta^4y_(-2)=-0.0003,Delta^5y_(-2)=0.0004`

Gauss's forward interpolation formula is
`y_p=y_0+p Delta y_0 + (p(p - 1))/(2!) * Delta^2y_(-1) + ((p + 1)p(p - 1))/(3!) * Delta^3y_(-1) + ((p + 1)p(p - 1)(p - 2))/(4!) * Delta^4y_(-2) + ((p + 2)(p + 1)p(p - 1)(p - 2))/(5!) * Delta^5y_(-2)`

`y_(0.75) = 2.5185 + (0.75)(0.013) + ((0.75)(0.75 - 1))/(2) * (-0.0003) + ((0.75 + 1)(0.75)(0.75 - 1))/(6) * (-0.0001) + ((0.75 + 1)(0.75)(0.75 - 1)(0.75 - 2))/(24) * (-0.0003) + ((0.75 + 2)(0.75 + 1)(0.75)(0.75 - 1)(0.75 - 2))/(120) * (0.0004)`

`y_(0.75)=2.5185 +0.00975 +0.000028125 +0.0000054687 -0.000005127 +0.0000037598`

`y_(0.75)=2.52828`


Solution of Gauss's forward interpolation is `y(337.5) = 2.52828`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.