Home > Numerical methods calculators > Numerical Interpolation using Hermite's formula example

11. Hermite's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

2. Example-2
(Previous example)
12. Missing terms in interpolation table
(Next method)

3. Example-3





Find Solution using Hermite's formula
xf(x)
31.0986
3.51.2528
41.3863

x = 3.2
Finding f(2)


Solution:
The value of table for `x`, `f(x)` and `f'(x)`

xy=f(x)y'=f'(x)
31.09860.3333
3.51.25280.2857
41.38630.25

The Polynomials `I_i(x)` are

`I_0(x)=((x - x_1)(x - x_2))/((x_0 - x_1)(x_0 - x_2))=((x -3.5)(x -4))/((3 -3.5)(3 -4))=((x -3.5)(x -4))/((-0.5)(-1))=(x^2-7.5x+14)/(0.5)=2x^2-15x+28`

`I_1(x)=((x - x_0)(x - x_2))/((x_1 - x_0)(x_1 - x_2))=((x -3)(x -4))/((3.5 -3)(3.5 -4))=((x -3)(x -4))/((0.5)(-0.5))=(x^2-7x+12)/(-0.25)=-4x^2+28x-48`

`I_2(x)=((x - x_0)(x - x_1))/((x_2 - x_0)(x_2 - x_1))=((x -3)(x -3.5))/((4 -3)(4 -3.5))=((x -3)(x -3.5))/((1)(0.5))=(x^2-6.5x+10.5)/(0.5)=2x^2-13x+21`

`I_0'(x)=4x-15`

`I_1'(x)=-8x+28`

`I_2'(x)=4x-13`

`I_0'(x_0)=I_0'(3)=4 xx 3-15=-3`

`I_1'(x_1)=I_1'(3.5)=-8 xx 3.5+28=0`

`I_2'(x_2)=I_2'(4)=4 xx 4-13=3`

Hermite Interpolation Formula is
`H(x)=sum u_i(x)*y_i + sum v_i(x)*y_i'`

where `u_i(x)=[1-2(x-x_i) I_i'(x_i)][I_i(x)]^2` and `v_i(x)=(x-x_i)[I_i(x)]^2`

`u_0(x)=[1-2(x-x_0) I_0'(x_0)][I_0(x)]^2`

`=>u_0(x)=[1-2(x-3) I_0'(3)][I_0(x)]^2`

`=>u_0(x)=[1-2(x-3) * (-3)][I_0(x)]^2`

`=>u_0(x)=[1 +6x-18][I_0(x)]^2`

`=>u_0(x)=(6x-17)(2x^2-15x+28)^2`

`v_0(x)=(x-x_0)[I_i(x)]^2`

`=>v_0(x)=(x-3)(2x^2-15x+28)^2`

`u_1(x)=[1-2(x-x_1) I_1'(x_1)][I_1(x)]^2`

`=>u_1(x)=[1-2(x-3.5) I_1'(3.5)][I_1(x)]^2`

`=>u_1(x)=[1-2(x-3.5) * (0)][I_1(x)]^2`

`=>u_1(x)=[1 +0][I_1(x)]^2`

`=>u_1(x)=(1)(-4x^2+28x-48)^2`

`v_1(x)=(x-x_1)[I_i(x)]^2`

`=>v_1(x)=(x-3.5)(-4x^2+28x-48)^2`

`u_2(x)=[1-2(x-x_2) I_2'(x_2)][I_2(x)]^2`

`=>u_2(x)=[1-2(x-4) I_2'(4)][I_2(x)]^2`

`=>u_2(x)=[1-2(x-4) * (3)][I_2(x)]^2`

`=>u_2(x)=[1 -6x+24][I_2(x)]^2`

`=>u_2(x)=(-6x+25)(2x^2-13x+21)^2`

`v_2(x)=(x-x_2)[I_i(x)]^2`

`=>v_2(x)=(x-4)(2x^2-13x+21)^2`

Hermite Interpolation formula is
`H(x)=u_0(x)*y_0+v_0(x)*y_0'+u_1(x)*y_1+v_1(x)*y_1'+u_2(x)*y_2+v_2(x)*y_2'`

`H(x)=(6x-17)(2x^2-15x+28)^2 * (1.0986) + (x-3)(2x^2-15x+28)^2 * (0.3333)+(1)(-4x^2+28x-48)^2 * (1.2528) + (x-3.5)(-4x^2+28x-48)^2 * (0.2857)+(-6x+25)(2x^2-13x+21)^2 * (1.3863) + (x-4)(2x^2-13x+21)^2 * (0.25)`

Putting x=3.2 and simplifying, we obtain
`H(3.2)=1.1632`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
12. Missing terms in interpolation table
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.