Home > Numerical methods calculators > Numerical Interpolation using Lagrange's Inverse Interpolation formula example

5. Lagrange's Inverse Interpolation formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

1. Formula & Example-1
(Previous example)
6. Gauss Forward formula
(Next method)

2. Example-2





2. Find Solution using Lagrange's Inverse Interpolation formula
xf(x)
294.8
587.9
881.3
1468.7

x = 85
Finding f(2)


Solution:
The value of table for `x` and `y`

x25814
y94.887.981.368.7

Lagrange's Inverse Interpolating Polynomial
The value of y at you want to find `P_n(y) : y = 85`

Lagrange's Inverse Interpolation formula is
`f(y) = ((y - y_1)(y - y_2)(y - y_3))/((y_0 - y_1)(y_0 - y_2)(y_0 - y_3)) xx x_0 + ((y - y_0)(y - y_2)(y - y_3))/((y_1 - y_0)(y_1 - y_2)(y_1 - y_3)) xx x_1 + ((y - y_0)(y - y_1)(y - y_3))/((y_2 - y_0)(y_2 - y_1)(y_2 - y_3)) xx x_2 + ((y - y_0)(y - y_1)(y - y_2))/((y_3 - y_0)(y_3 - y_1)(y_3 - y_2)) xx x_3`

`x(85) = ((85 - 87.9)(85 - 81.3)(85 - 68.7))/((94.8 - 87.9)(94.8 - 81.3)(94.8 - 68.7)) xx 2 + ((85 - 94.8)(85 - 81.3)(85 - 68.7))/((87.9 - 94.8)(87.9 - 81.3)(87.9 - 68.7)) xx 5 + ((85 - 94.8)(85 - 87.9)(85 - 68.7))/((81.3 - 94.8)(81.3 - 87.9)(81.3 - 68.7)) xx 8 + ((85 - 94.8)(85 - 87.9)(85 - 81.3))/((68.7 - 94.8)(68.7 - 87.9)(68.7 - 81.3)) xx 14`

`x(85) = ((-2.9)(3.7)(16.3))/((6.9)(13.5)(26.1)) xx 2 + ((-9.8)(3.7)(16.3))/((-6.9)(6.6)(19.2)) xx 5 + ((-9.8)(-2.9)(16.3))/((-13.5)(-6.6)(12.6)) xx 8 + ((-9.8)(-2.9)(3.7))/((-26.1)(-19.2)(-12.6)) xx 14`

`x(85) = (-0.0719) xx 2 + 0.676 xx 5 + 0.4126 xx 8 + (-0.0167) xx 14`

`x(85) = 6.3038`


Solution of the polynomial at point `85` is `x(85) = 6.3038`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
6. Gauss Forward formula
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.