Home > Statistical Methods calculators > Population Variance, Standard deviation and coefficient of variation for ungrouped data example

Population Variance, Standard deviation and coefficient of variation for ungrouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Population Variance Example
  3. Population Standard deviation Example
  4. Population coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

2. Quartile, Decile, Percentile, Octile, Quintile
(Previous method)
2. Population Variance Example
(Next example)

1. Formula & Example





Formula
1. Mean `bar x = (sum x)/n`
2. Population Variance `sigma^2 = (sum x^2 - (sum x)^2/n)/n`
3. Population Standard deviation `sigma = sqrt((sum x^2 - (sum x)^2/n)/n)`
4. Coefficient of Variation (Population) `=sigma / bar x * 100 %`

Examples
1. Calculate Population Variance `(sigma^2)`, Population Standard deviation `(sigma)`, Population Coefficient of Variation from the following data
3,13,11,15,5,4,2,3,2


Solution:
`x``x^2`
3 9 `9=3xx3`
13 169 `169=13xx13`
11 121 `121=11xx11`
15 225 `225=15xx15`
5 25 `25=5xx5`
4 16 `16=4xx4`
2 4 `4=2xx2`
3 9 `9=3xx3`
2 4 `4=2xx2`
------
`sum x=58``sum x^2=582`


Mean `bar x = (sum x)/n`

`=(3 + 13 + 11 + 15 + 5 + 4 + 2 + 3 + 2)/9`

`=58/9`

`=6.4444`



Population Variance `sigma^2 = (sum x^2 - (sum x)^2/n)/n`

`=(582 - (58)^2/9)/9`

`=(582 - 373.7778)/9`

`=208.2222/9`

`=23.1358`



Population Standard deviation `sigma = sqrt((sum x^2 - (sum x)^2/n)/n)`

`=sqrt((582 - (58)^2/9)/9)`

`=sqrt((582 - 373.7778)/9)`

`=sqrt(208.2222/9)`

`=sqrt(23.1358)`

`=4.81`



Coefficient of Variation (Population) `=sigma / bar x * 100 %`

`=4.81/6.4444 * 100 %`

`=74.64 %` 2. Calculate Population Variance `(sigma^2)`, Population Standard deviation `(sigma)`, Population Coefficient of Variation from the following data
85,96,76,108,85,80,100,85,70,95


Solution:
`x``x - bar x = x - 88``(x - bar x)^2`
85 -3 `-3=85-88` 9 `9=-3xx-3`
96 8 `8=96-88` 64 `64=8xx8`
76 -12 `-12=76-88` 144 `144=-12xx-12`
108 20 `20=108-88` 400 `400=20xx20`
85 -3 `-3=85-88` 9 `9=-3xx-3`
80 -8 `-8=80-88` 64 `64=-8xx-8`
100 12 `12=100-88` 144 `144=12xx12`
85 -3 `-3=85-88` 9 `9=-3xx-3`
70 -18 `-18=70-88` 324 `324=-18xx-18`
95 7 `7=95-88` 49 `49=7xx7`
---------
`sum x=880``sum (x - bar x)=0``sum (x - bar x)^2=1216`


Mean `bar x = (sum x)/n`

`=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10`

`=880/10`

`=88`



Population Variance `sigma^2 = (sum (x - bar x)^2)/n`

`=1216/10`

`=121.6`



Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`

`=sqrt(1216/10)`

`=sqrt(121.6)`

`=11.0272`



Coefficient of Variation (Population) `=sigma / bar x * 100 %`

`=11.0272/88 * 100 %`

`=12.53 %`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Quartile, Decile, Percentile, Octile, Quintile
(Previous method)
2. Population Variance Example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.