Home > Statistical Methods calculators > Population Variance, Standard deviation and coefficient of variation for ungrouped data example

Population Variance, Standard deviation and coefficient of variation for ungrouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Population Variance Example
  3. Population Standard deviation Example
  4. Population coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Coefficient of Mean deviation
  9. Quartile deviation, Coefficient of QD, Interquartile range
  10. Decile deviation, Coefficient of DD, Interdecile range
  11. Percentile deviation, Coefficient of PD, Interpercentile range
  12. Five number summary
  13. Box and Whisker Plots
  14. Construct an ungrouped frequency distribution table
  15. Construct a grouped frequency distribution table
  16. Maximum, Minimum
  17. Sum, Length
  18. Range, Mid Range
  19. Stem and leaf plot
  20. Ascending order, Descending order

2. Quartile, Decile, Percentile, Octile, Quintile
(Previous method)
2. Population Variance Example
(Next example)

1. Formula & Example





Formula
1. Mean `bar x = (sum x)/n`
2. Population Variance `sigma^2 = (sum x^2 - (sum x)^2/n)/n`
3. Population Standard deviation `sigma = sqrt((sum x^2 - (sum x)^2/n)/n)`
4. Coefficient of Variation (Population) `=sigma / bar x * 100 %`

Examples
1. Calculate Population Variance `(sigma^2)`, Population Standard deviation `(sigma)`, Population Coefficient of Variation from the following data
3,13,11,15,5,4,2,3,2


Solution:
`x``x^2`
3 9 `9=3xx3`
13 169 `169=13xx13`
11 121 `121=11xx11`
15 225 `225=15xx15`
5 25 `25=5xx5`
4 16 `16=4xx4`
2 4 `4=2xx2`
3 9 `9=3xx3`
2 4 `4=2xx2`
------
`sum x=58``sum x^2=582`


Mean `bar x = (sum x)/n`

`=(3 + 13 + 11 + 15 + 5 + 4 + 2 + 3 + 2)/9`

`=58/9`

`=6.4444`



Population Variance `sigma^2 = (sum x^2 - (sum x)^2/n)/n`

`=(582 - (58)^2/9)/9`

`=(582 - 373.7778)/9`

`=208.2222/9`

`=23.1358`



Population Standard deviation `sigma = sqrt((sum x^2 - (sum x)^2/n)/n)`

`=sqrt((582 - (58)^2/9)/9)`

`=sqrt((582 - 373.7778)/9)`

`=sqrt(208.2222/9)`

`=sqrt(23.1358)`

`=4.81`



Coefficient of Variation (Population) `=sigma / bar x * 100 %`

`=4.81/6.4444 * 100 %`

`=74.64 %` 2. Calculate Population Variance `(sigma^2)`, Population Standard deviation `(sigma)`, Population Coefficient of Variation from the following data
85,96,76,108,85,80,100,85,70,95


Solution:
`x``x - bar x = x - 88``(x - bar x)^2`
85 -3 `-3=85-88` 9 `9=-3xx-3`
96 8 `8=96-88` 64 `64=8xx8`
76 -12 `-12=76-88` 144 `144=-12xx-12`
108 20 `20=108-88` 400 `400=20xx20`
85 -3 `-3=85-88` 9 `9=-3xx-3`
80 -8 `-8=80-88` 64 `64=-8xx-8`
100 12 `12=100-88` 144 `144=12xx12`
85 -3 `-3=85-88` 9 `9=-3xx-3`
70 -18 `-18=70-88` 324 `324=-18xx-18`
95 7 `7=95-88` 49 `49=7xx7`
---------
`sum x=880``sum (x - bar x)=0``sum (x - bar x)^2=1216`


Mean `bar x = (sum x)/n`

`=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10`

`=880/10`

`=88`



Population Variance `sigma^2 = (sum (x - bar x)^2)/n`

`=1216/10`

`=121.6`



Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`

`=sqrt(1216/10)`

`=sqrt(121.6)`

`=11.0272`



Coefficient of Variation (Population) `=sigma / bar x * 100 %`

`=11.0272/88 * 100 %`

`=12.53 %`





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Quartile, Decile, Percentile, Octile, Quintile
(Previous method)
2. Population Variance Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.