Home > Statistical Methods calculators > Population Variance, Standard deviation and coefficient of variation for ungrouped data example

Population Variance, Standard deviation and coefficient of variation for ungrouped data Formula & Example ( Enter your problem )
  1. Formula & Example
  2. Population Variance Example
  3. Population Standard deviation Example
  4. Population coefficient of variation Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Construct an ungrouped frequency distribution table
  19. Construct a grouped frequency distribution table
  20. Maximum, Minimum
  21. Sum, Length
  22. Range, Mid Range
  23. Stem and leaf plot
  24. Ascending order, Descending order

6. Quintile
(Previous method)
2. Population Variance Example
(Next example)

1. Formula & Example





Formula
1. Mean `bar x = (sum x)/n`
2. Population Variance `sigma^2 = (sum x^2 - (sum x)^2/n)/n`
3. Population Standard deviation `sigma = sqrt((sum x^2 - (sum x)^2/n)/n)`
4. Coefficient of Variation (Population) `=sigma / bar x * 100 %`

Examples
1. Calculate Population Variance `(sigma^2)`, Population Standard deviation `(sigma)`, Population Coefficient of Variation from the following data
3,13,11,15,5,4,2,3,2


Solution:
`x``x^2`
3 9 `9=3xx3`
13 169 `169=13xx13`
11 121 `121=11xx11`
15 225 `225=15xx15`
5 25 `25=5xx5`
4 16 `16=4xx4`
2 4 `4=2xx2`
3 9 `9=3xx3`
2 4 `4=2xx2`
------
`sum x=58``sum x^2=582`


Mean `bar x = (sum x)/n`

`=(3 + 13 + 11 + 15 + 5 + 4 + 2 + 3 + 2)/9`

`=58/9`

`=6.4444`



Population Variance `sigma^2 = (sum x^2 - (sum x)^2/n)/n`

`=(582 - (58)^2/9)/9`

`=(582 - 373.7778)/9`

`=208.2222/9`

`=23.1358`



Population Standard deviation `sigma = sqrt((sum x^2 - (sum x)^2/n)/n)`

`=sqrt((582 - (58)^2/9)/9)`

`=sqrt((582 - 373.7778)/9)`

`=sqrt(208.2222/9)`

`=sqrt(23.1358)`

`=4.81`



Coefficient of Variation (Population) `=sigma / bar x * 100 %`

`=4.81/6.4444 * 100 %`

`=74.64 %` 2. Calculate Population Variance `(sigma^2)`, Population Standard deviation `(sigma)`, Population Coefficient of Variation from the following data
85,96,76,108,85,80,100,85,70,95


Solution:
`x``x - bar x = x - 88``(x - bar x)^2`
85 -3 `-3=85-88` 9 `9=-3xx-3`
96 8 `8=96-88` 64 `64=8xx8`
76 -12 `-12=76-88` 144 `144=-12xx-12`
108 20 `20=108-88` 400 `400=20xx20`
85 -3 `-3=85-88` 9 `9=-3xx-3`
80 -8 `-8=80-88` 64 `64=-8xx-8`
100 12 `12=100-88` 144 `144=12xx12`
85 -3 `-3=85-88` 9 `9=-3xx-3`
70 -18 `-18=70-88` 324 `324=-18xx-18`
95 7 `7=95-88` 49 `49=7xx7`
---------
`sum x=880``sum (x - bar x)=0``sum (x - bar x)^2=1216`


Mean `bar x = (sum x)/n`

`=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10`

`=880/10`

`=88`



Population Variance `sigma^2 = (sum (x - bar x)^2)/n`

`=1216/10`

`=121.6`



Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`

`=sqrt(1216/10)`

`=sqrt(121.6)`

`=11.0272`



Coefficient of Variation (Population) `=sigma / bar x * 100 %`

`=11.0272/88 * 100 %`

`=12.53 %`







This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Quintile
(Previous method)
2. Population Variance Example
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.