Formula
|
1. Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
|
|
2. Skewness `= (sum(x - bar x)^3)/(n*S^3)`
|
|
3. Kurtosis `= (sum(x - bar x)^4)/(n*S^4)`
|
Examples
1. Calculate Population Skewness, Population Kurtosis from the following data
`85,96,76,108,85,80,100,85,70,95`Solution:Skewness,Kurtosis :Mean `bar x=(sum x)/n`
`=(85+96+76+108+85+80+100+85+70+95)/10`
`=880/10`
`=88`
| `x` | `(x - bar x)` `=(x-88)` | `(x - bar x)^2` `=(x-88)^2` | `(x - bar x)^3` `=(x-88)^3` | `(x - bar x)^4` `=(x-88)^4` |
| 85 | -3 | 9 | -27 | 81 |
| 96 | 8 | 64 | 512 | 4096 |
| 76 | -12 | 144 | -1728 | 20736 |
| 108 | 20 | 400 | 8000 | 160000 |
| 85 | -3 | 9 | -27 | 81 |
| 80 | -8 | 64 | -512 | 4096 |
| 100 | 12 | 144 | 1728 | 20736 |
| 85 | -3 | 9 | -27 | 81 |
| 70 | -18 | 324 | -5832 | 104976 |
| 95 | 7 | 49 | 343 | 2401 |
| --- | --- | --- | --- | --- |
| `880` | `0` | `1216` | `2430` | `317284` |
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
`=sqrt(1216/10)`
`=sqrt(121.6)`
`=11.0272`
Population Skewness `= (sum (x - bar x)^3)/(n*S^3)`
`=2430/(10*(11.0272)^3)`
`=2430/(10*1340.9123)`
`=0.1812`
Population Kurtosis `= (sum (x - bar x)^4)/(n*S^4)`
`=317284/(10*(11.0272)^4)`
`=317284/(10*14786.56)`
`=2.1458`
2. Calculate Population Skewness, Population Kurtosis from the following data
`69,66,67,69,64,63,65,68,72`Solution:Skewness,Kurtosis :Mean `bar x=(sum x)/n`
`=(69+66+67+69+64+63+65+68+72)/9`
`=603/9`
`=67`
| `x` | `(x - bar x)` `=(x-67)` | `(x - bar x)^2` `=(x-67)^2` | `(x - bar x)^3` `=(x-67)^3` | `(x - bar x)^4` `=(x-67)^4` |
| 69 | 2 | 4 | 8 | 16 |
| 66 | -1 | 1 | -1 | 1 |
| 67 | 0 | 0 | 0 | 0 |
| 69 | 2 | 4 | 8 | 16 |
| 64 | -3 | 9 | -27 | 81 |
| 63 | -4 | 16 | -64 | 256 |
| 65 | -2 | 4 | -8 | 16 |
| 68 | 1 | 1 | 1 | 1 |
| 72 | 5 | 25 | 125 | 625 |
| --- | --- | --- | --- | --- |
| `603` | `0` | `64` | `42` | `1012` |
Population Standard deviation `sigma = sqrt((sum (x - bar x)^2)/n)`
`=sqrt(64/9)`
`=sqrt(7.1111)`
`=2.6667`
Population Skewness `= (sum (x - bar x)^3)/(n*S^3)`
`=42/(9*(2.6667)^3)`
`=42/(9*18.963)`
`=0.2461`
Population Kurtosis `= (sum (x - bar x)^4)/(n*S^4)`
`=1012/(9*(2.6667)^4)`
`=1012/(9*50.5679)`
`=2.2236`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then