Formula
1. Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`
|
2. Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`
|
3. Kurtosis `= (sum(x - bar x)^4)/((n-1)*S^4)`
|
Examples
1. Calculate Sample Skewness, Sample Kurtosis from the following data
3,13,11,11,5,4,2Solution:Mean `bar x = (sum x)/n`
`=(3 + 13 + 11 + 11 + 5 + 4 + 2)/7`
`=49/7`
`=7`
`x` | `(x - bar x)` `= (x - 7)` | `(x - bar x)^2` `= (x - 7)^2` | `(x - bar x)^3` `= (x - 7)^3` |
3 | -4 `(3-7)=-4` `(x - 7)` | 16 `(3-7)^2=16` `(x - 7)^2` | -64 `(3-7)^3=-64` `(x - 7)^3` |
13 | 6 `(13-7)=6` `(x - 7)` | 36 `(13-7)^2=36` `(x - 7)^2` | 216 `(13-7)^3=216` `(x - 7)^3` |
11 | 4 `(11-7)=4` `(x - 7)` | 16 `(11-7)^2=16` `(x - 7)^2` | 64 `(11-7)^3=64` `(x - 7)^3` |
11 | 4 `(11-7)=4` `(x - 7)` | 16 `(11-7)^2=16` `(x - 7)^2` | 64 `(11-7)^3=64` `(x - 7)^3` |
5 | -2 `(5-7)=-2` `(x - 7)` | 4 `(5-7)^2=4` `(x - 7)^2` | -8 `(5-7)^3=-8` `(x - 7)^3` |
4 | -3 `(4-7)=-3` `(x - 7)` | 9 `(4-7)^2=9` `(x - 7)^2` | -27 `(4-7)^3=-27` `(x - 7)^3` |
2 | -5 `(2-7)=-5` `(x - 7)` | 25 `(2-7)^2=25` `(x - 7)^2` | -125 `(2-7)^3=-125` `(x - 7)^3` |
--- | --- | --- | --- |
49 | 0 | 122 | 120 |
Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`
`=sqrt(122/6)`
`=sqrt(20.3333)`
`=4.5092`
Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`
`=120/(6*(4.5092)^3)`
`=120/(6*91.6881)`
`=0.2181`
Kurtosis `= (sum(x - bar x)^4)/((n-1)*S^4)`
`=2786/(6*(4.5092)^4)`
`=2786/(6*413.4444)`
`=1.1231`
2. Calculate Sample Skewness, Sample Kurtosis from the following data
85,96,76,108,85,80,100,85,70,95Solution:Mean `bar x = (sum x)/n`
`=(85 + 96 + 76 + 108 + 85 + 80 + 100 + 85 + 70 + 95)/10`
`=880/10`
`=88`
`x` | `(x - bar x)` `= (x - 88)` | `(x - bar x)^2` `= (x - 88)^2` | `(x - bar x)^3` `= (x - 88)^3` |
85 | -3 `(85-88)=-3` `(x - 88)` | 9 `(85-88)^2=9` `(x - 88)^2` | -27 `(85-88)^3=-27` `(x - 88)^3` |
96 | 8 `(96-88)=8` `(x - 88)` | 64 `(96-88)^2=64` `(x - 88)^2` | 512 `(96-88)^3=512` `(x - 88)^3` |
76 | -12 `(76-88)=-12` `(x - 88)` | 144 `(76-88)^2=144` `(x - 88)^2` | -1728 `(76-88)^3=-1728` `(x - 88)^3` |
108 | 20 `(108-88)=20` `(x - 88)` | 400 `(108-88)^2=400` `(x - 88)^2` | 8000 `(108-88)^3=8000` `(x - 88)^3` |
85 | -3 `(85-88)=-3` `(x - 88)` | 9 `(85-88)^2=9` `(x - 88)^2` | -27 `(85-88)^3=-27` `(x - 88)^3` |
80 | -8 `(80-88)=-8` `(x - 88)` | 64 `(80-88)^2=64` `(x - 88)^2` | -512 `(80-88)^3=-512` `(x - 88)^3` |
100 | 12 `(100-88)=12` `(x - 88)` | 144 `(100-88)^2=144` `(x - 88)^2` | 1728 `(100-88)^3=1728` `(x - 88)^3` |
85 | -3 `(85-88)=-3` `(x - 88)` | 9 `(85-88)^2=9` `(x - 88)^2` | -27 `(85-88)^3=-27` `(x - 88)^3` |
70 | -18 `(70-88)=-18` `(x - 88)` | 324 `(70-88)^2=324` `(x - 88)^2` | -5832 `(70-88)^3=-5832` `(x - 88)^3` |
95 | 7 `(95-88)=7` `(x - 88)` | 49 `(95-88)^2=49` `(x - 88)^2` | 343 `(95-88)^3=343` `(x - 88)^3` |
--- | --- | --- | --- |
880 | 0 | 1216 | 2430 |
Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`
`=sqrt(1216/9)`
`=sqrt(135.1111)`
`=11.6237`
Skewness `= (sum(x - bar x)^3)/((n-1)*S^3)`
`=2430/(9*(11.6237)^3)`
`=2430/(9*1570.4951)`
`=0.1719`
Kurtosis `= (sum(x - bar x)^4)/((n-1)*S^4)`
`=317284/(9*(11.6237)^4)`
`=317284/(9*18255.0123)`
`=1.9312`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then