Home > Statistical Methods calculators > Sample Skewness, Kurtosis for ungrouped data example

Sample Kurtosis Example for ungrouped data ( Enter your problem )
  1. Formula & Example
  2. Sample Skewness Example
  3. Sample Kurtosis Example
Other related methods
  1. Mean, Median and Mode
  2. Quartile, Decile, Percentile, Octile, Quintile
  3. Population Variance, Standard deviation and coefficient of variation
  4. Sample Variance, Standard deviation and coefficient of variation
  5. Population Skewness, Kurtosis
  6. Sample Skewness, Kurtosis
  7. Geometric mean, Harmonic mean
  8. Mean deviation, Quartile deviation, Decile deviation, Percentile deviation
  9. Five number summary
  10. Box and Whisker Plots
  11. Construct an ungrouped frequency distribution table
  12. Construct a grouped frequency distribution table
  13. Maximum, Minimum
  14. Sum, Length
  15. Range, Mid Range
  16. Stem and leaf plot
  17. Ascending order, Descending order

2. Sample Skewness Example
(Previous example)
7. Geometric mean, Harmonic mean
(Next method)

3. Sample Kurtosis Example





1. Calculate Sample Kurtosis from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Kurtosis :
Mean `bar x=(sum x)/n`

`=(85+96+76+108+85+80+100+85+70+95)/10`

`=880/10`

`=88`

`x``(x - bar x)`
`= (x - 88)`
`(x - bar x)^2`
`= (x - 88)^2`
`(x - bar x)^3`
`= (x - 88)^3`
`(x - bar x)^4`
`= (x - 88)^4`
85-39-2781
968645124096
76-12144-172820736
108204008000160000
85-39-2781
80-864-5124096
10012144172820736
85-39-2781
70-18324-5832104976
957493432401
---------------
880012162430317284


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(1216/9)`

`=sqrt(135.1111)`

`=11.6237`



Sample Kurtosis `= (sum(x - bar x)^4)/((n-1)*S^4)`

`=317284/(9*(11.6237)^4)`

`=317284/(9*18255.0123)`

`=1.9312`


2. Calculate Sample Kurtosis from the following data
`10,50,30,20,10,20,70,30`


Solution:
Kurtosis :
Mean `bar x=(sum x)/n`

`=(10+50+30+20+10+20+70+30)/8`

`=240/8`

`=30`

`x``(x - bar x)`
`= (x - 30)`
`(x - bar x)^2`
`= (x - 30)^2`
`(x - bar x)^3`
`= (x - 30)^3`
`(x - bar x)^4`
`= (x - 30)^4`
10-20400-8000160000
50204008000160000
300000
20-10100-100010000
10-20400-8000160000
20-10100-100010000
70401600640002560000
300000
---------------
24003000540003060000


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(3000/7)`

`=sqrt(428.5714)`

`=20.702`



Sample Kurtosis `= (sum(x - bar x)^4)/((n-1)*S^4)`

`=3060000/(7*(20.702)^4)`

`=3060000/(7*183673.4694)`

`=2.38`


3. Calculate Sample Kurtosis from the following data
`73,70,71,73,68,67,69,72,76,71`


Solution:
Kurtosis :
Mean `bar x=(sum x)/n`

`=(73+70+71+73+68+67+69+72+76+71)/10`

`=710/10`

`=71`

`x``(x - bar x)`
`= (x - 71)`
`(x - bar x)^2`
`= (x - 71)^2`
`(x - bar x)^3`
`= (x - 71)^3`
`(x - bar x)^4`
`= (x - 71)^4`
7324816
70-11-11
710000
7324816
68-39-2781
67-416-64256
69-24-816
721111
76525125625
710000
---------------
710064421012


Sample Standard deviation `S = sqrt((sum (x - bar x)^2)/(n-1))`

`=sqrt(64/9)`

`=sqrt(7.1111)`

`=2.6667`



Sample Kurtosis `= (sum(x - bar x)^4)/((n-1)*S^4)`

`=1012/(9*(2.6667)^4)`

`=1012/(9*50.5679)`

`=2.2236`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Sample Skewness Example
(Previous example)
7. Geometric mean, Harmonic mean
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.