Home > Statistical Methods calculators > Raw Moments (Moments about origin), Central Moments (Moments about mean), Moment coefficient of skewness, Moment coefficient of kurtosis for ungrouped data example

Moments about origin Examples for ungrouped data ( Enter your problem )
  1. Moments about mean Examples
  2. Moments about origin Examples
  3. Moments about the value Examples
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Construct an ungrouped frequency distribution table
  19. Construct a grouped frequency distribution table
  20. Maximum, Minimum
  21. Sum, Length
  22. Range, Mid Range
  23. Stem and leaf plot
  24. Ascending order, Descending order
  25. Raw Moments and Central Moments

1. Moments about mean Examples
(Previous example)
3. Moments about the value Examples
(Next example)

2. Moments about origin Examples





1. Calculate Moment about origin from the following data
`10,50,30,20,10,20,70,30`


Solution:
Moments :
`x``x^2``x^3``x^4`
10100100010000
5025001250006250000
3090027000810000
204008000160000
10100100010000
204008000160000
70490034300024010000
3090027000810000
------------
`240``10200``540000``32220000`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum x)/n`

`=(240)/(8)`

`=30`



Second Raw Moment
`M_2=(sum x^2)/n`

`=(10200)/(8)`

`=1275`



Third Raw Moment
`M_3=(sum x^3)/n`

`=(540000)/(8)`

`=67500`



Fourth Raw Moment
`M_4=(sum x^4)/n`

`=(32220000)/(8)`

`=4027500`



Find Central moments using Moments about origin

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=1275-30^2`

`=1275-900`

`=375`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=67500-3*1275*30+2*30^3`

`=67500-114750+54000`

`=6750`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=4027500-4*67500*30+6*1275*30^2-3*30^4`

`=4027500-8100000+6885000-2430000`

`=382500`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(6750)^2/(375)^3`

`=(45562500)/(52734375)`

`=0.864`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(382500)/(375)^2`

`=(382500)/(140625)`

`=2.72`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
2. Calculate Moment about origin from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Moments :
`x``x^2``x^3``x^4`
85722561412552200625
96921688473684934656
76577643897633362176
108116641259712136048896
85722561412552200625
80640051200040960000
100100001000000100000000
85722561412552200625
70490034300024010000
95902585737581450625
------------
`880``78656``7138174``657368228`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum x)/n`

`=(880)/(10)`

`=88`



Second Raw Moment
`M_2=(sum x^2)/n`

`=(78656)/(10)`

`=7865.6`



Third Raw Moment
`M_3=(sum x^3)/n`

`=(7138174)/(10)`

`=713817.4`



Fourth Raw Moment
`M_4=(sum x^4)/n`

`=(657368228)/(10)`

`=65736822.8`



Find Central moments using Moments about origin

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=7865.6-88^2`

`=7865.6-7744`

`=121.6`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=713817.4-3*7865.6*88+2*88^3`

`=713817.4-2076518.4+1362944`

`=243`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=65736822.8-4*713817.4*88+6*7865.6*88^2-3*88^4`

`=65736822.8-251263724.8+365467238.4-179908608`

`=31728.4`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(243)^2/(121.6)^3`

`=(59049)/(1798045.696)`

`=0.0328`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(31728.4)/(121.6)^2`

`=(31728.4)/(14786.56)`

`=2.1458`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
3. Calculate Moment about origin from the following data
`3,23,13,11,15,5,4,2`


Solution:
Moments :
`x``x^2``x^3``x^4`
392781
2352912167279841
13169219728561
11121133114641
15225337550625
525125625
41664256
24816
------------
`76``1098``19294``374646`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum x)/n`

`=(76)/(8)`

`=9.5`



Second Raw Moment
`M_2=(sum x^2)/n`

`=(1098)/(8)`

`=137.25`



Third Raw Moment
`M_3=(sum x^3)/n`

`=(19294)/(8)`

`=2411.75`



Fourth Raw Moment
`M_4=(sum x^4)/n`

`=(374646)/(8)`

`=46830.75`



Find Central moments using Moments about origin

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=137.25-9.5^2`

`=137.25-90.25`

`=47`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=2411.75-3*137.25*9.5+2*9.5^3`

`=2411.75-3911.625+1714.75`

`=214.875`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=46830.75-4*2411.75*9.5+6*137.25*9.5^2-3*9.5^4`

`=46830.75-91646.5+74320.875-24435.1875`

`=5069.9375`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(214.875)^2/(47)^3`

`=(46171.2656)/(103823)`

`=0.4447`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(5069.9375)/(47)^2`

`=(5069.9375)/(2209)`

`=2.2951`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Moments about mean Examples
(Previous example)
3. Moments about the value Examples
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.