Home > Statistical Methods calculators > Raw Moments (Moments about origin), Central Moments (Moments about mean), Moment coefficient of skewness, Moment coefficient of kurtosis for ungrouped data example

Moments about the value Examples for ungrouped data ( Enter your problem )
  1. Moments about mean Examples
  2. Moments about origin Examples
  3. Moments about the value Examples
Other related methods
  1. Mean, Median and Mode
  2. Quartile
  3. Decile
  4. Percentile
  5. Octile
  6. Quintile
  7. Population Variance, Standard deviation and coefficient of variation
  8. Sample Variance, Standard deviation and coefficient of variation
  9. Population Skewness, Kurtosis
  10. Sample Skewness, Kurtosis
  11. Geometric mean, Harmonic mean
  12. Mean deviation, Coefficient of Mean deviation
  13. Quartile deviation, Coefficient of QD, Interquartile range
  14. Decile deviation, Coefficient of DD, Interdecile range
  15. Percentile deviation, Coefficient of PD, Interpercentile range
  16. Five number summary
  17. Box and Whisker Plots
  18. Construct an ungrouped frequency distribution table
  19. Construct a grouped frequency distribution table
  20. Maximum, Minimum
  21. Sum, Length
  22. Range, Mid Range
  23. Stem and leaf plot
  24. Ascending order, Descending order
  25. Raw Moments and Central Moments

2. Moments about origin Examples
(Previous example)

3. Moments about the value Examples





1. Calculate Moment about the value 20 from the following data
`10,50,30,20,10,20,70,30`


Solution:
Moments :
`A=20`

`x``(x-A)`
`=(x-20)`
`(x-A)^2`
`=(x-20)^2`
`(x-A)^3`
`=(x-20)^3`
`(x-A)^4`
`=(x-20)^4`
10-10100-100010000
503090027000810000
3010100100010000
200000
10-10100-100010000
200000
705025001250006250000
3010100100010000
---------------
`240``80``3800``152000``7100000`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum (x-A))/n`

`=(80)/(8)`

`=10`



Second Raw Moment
`M_2=(sum (x-A)^2)/n`

`=(3800)/(8)`

`=475`



Third Raw Moment
`M_3=(sum (x-A)^3)/n`

`=(152000)/(8)`

`=19000`



Fourth Raw Moment
`M_4=(sum (x-A)^4)/n`

`=(7100000)/(8)`

`=887500`



Find Central moments using Moments about the value 20

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=475-10^2`

`=475-100`

`=375`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=19000-3*475*10+2*10^3`

`=19000-14250+2000`

`=6750`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=887500-4*19000*10+6*475*10^2-3*10^4`

`=887500-760000+285000-30000`

`=382500`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(6750)^2/(375)^3`

`=(45562500)/(52734375)`

`=0.864`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(382500)/(375)^2`

`=(382500)/(140625)`

`=2.72`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
2. Calculate Moment about the value 90 from the following data
`85,96,76,108,85,80,100,85,70,95`


Solution:
Moments :
`A=90`

`x``(x-A)`
`=(x-90)`
`(x-A)^2`
`=(x-90)^2`
`(x-A)^3`
`=(x-90)^3`
`(x-A)^4`
`=(x-90)^4`
85-525-125625
966362161296
76-14196-274438416
108183245832104976
85-525-125625
80-10100-100010000
10010100100010000
85-525-125625
70-20400-8000160000
95525125625
---------------
`880``-20``1256``-4946``327188`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum (x-A))/n`

`=(-20)/(10)`

`=-2`



Second Raw Moment
`M_2=(sum (x-A)^2)/n`

`=(1256)/(10)`

`=125.6`



Third Raw Moment
`M_3=(sum (x-A)^3)/n`

`=(-4946)/(10)`

`=-494.6`



Fourth Raw Moment
`M_4=(sum (x-A)^4)/n`

`=(327188)/(10)`

`=32718.8`



Find Central moments using Moments about the value 90

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=125.6-(-2)^2`

`=125.6-4`

`=121.6`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=(-494.6)-3*125.6*(-2)+2*(-2)^3`

`=(-494.6)+753.6-16`

`=243`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=32718.8-4*(-494.6)*(-2)+6*125.6*(-2)^2-3*(-2)^4`

`=32718.8-3956.8+3014.4-48`

`=31728.4`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(243)^2/(121.6)^3`

`=(59049)/(1798045.696)`

`=0.0328`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(31728.4)/(121.6)^2`

`=(31728.4)/(14786.56)`

`=2.1458`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)
3. Calculate Moment about the value 10 from the following data
`3,23,13,11,15,5,4,2`


Solution:
Moments :
`A=10`

`x``(x-A)`
`=(x-10)`
`(x-A)^2`
`=(x-10)^2`
`(x-A)^3`
`=(x-10)^3`
`(x-A)^4`
`=(x-10)^4`
3-749-3432401
2313169219728561
13392781
111111
15525125625
5-525-125625
4-636-2161296
2-864-5124096
---------------
`76``-4``378``1154``37686`


Now, calculate Raw Moments

First Raw Moment
`M_1=(sum (x-A))/n`

`=(-4)/(8)`

`=-0.5`



Second Raw Moment
`M_2=(sum (x-A)^2)/n`

`=(378)/(8)`

`=47.25`



Third Raw Moment
`M_3=(sum (x-A)^3)/n`

`=(1154)/(8)`

`=144.25`



Fourth Raw Moment
`M_4=(sum (x-A)^4)/n`

`=(37686)/(8)`

`=4710.75`



Find Central moments using Moments about the value 10

First Central Moment
`m_1=0`



Second Central Moment
`m_2=M_2-M_1^2`

`=47.25-(-0.5)^2`

`=47.25-0.25`

`=47`



Third Central Moment
`m_3=M_3-3M_2M_1+2M_1^3`

`=144.25-3*47.25*(-0.5)+2*(-0.5)^3`

`=144.25+70.875-0.25`

`=214.875`



Fourth Central Moment
`m_4=M_4-4M_3M_1+6M_2M_1^2-3M_1^4`

`=4710.75-4*144.25*(-0.5)+6*47.25*(-0.5)^2-3*(-0.5)^4`

`=4710.75+288.5+70.875-0.1875`

`=5069.9375`



Skewness `beta_1=(m_3)^2/(m_2)^3`

`=(214.875)^2/(47)^3`

`=(46171.2656)/(103823)`

`=0.4447`



Kurtosis `beta_2=(m_4)/(m_2)^2`

`=(5069.9375)/(47)^2`

`=(5069.9375)/(2209)`

`=2.2951`



Moment coefficient of skewness
`beta_1>0` : The distribution is positively skewed (a longer tail to the right).

Moment coefficient of kurtosis
`beta_2<3` : platykurtic (flatter with lighter tails)




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Moments about origin Examples
(Previous example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.