Home > Numerical methods calculators > Numerical Interpolation using Lagrange's Interpolation formula example

4. Lagrange's Interpolation formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

2. Example-2
(Previous example)
5. Lagrange's Inverse Interpolation formula
(Next method)

3. Example-3





Find Solution using Lagrange's Interpolation formula
xf(x)
-13
0-6
339
6822
71611

x = 1
Finding f(2)


Solution:
The value of table for `x` and `y`

x-10367
y3-6398221611

Lagrange's Interpolating Polynomial
The value of x at you want to find `P_n(x) : x = 1`

Lagrange's Interpolation formula is
`f(x) = ((x - x_1)(x - x_2)(x - x_3)(x - x_4))/((x_0 - x_1)(x_0 - x_2)(x_0 - x_3)(x_0 - x_4)) xx y_0 + ((x - x_0)(x - x_2)(x - x_3)(x - x_4))/((x_1 - x_0)(x_1 - x_2)(x_1 - x_3)(x_1 - x_4)) xx y_1 + ((x - x_0)(x - x_1)(x - x_3)(x - x_4))/((x_2 - x_0)(x_2 - x_1)(x_2 - x_3)(x_2 - x_4)) xx y_2 + ((x - x_0)(x - x_1)(x - x_2)(x - x_4))/((x_3 - x_0)(x_3 - x_1)(x_3 - x_2)(x_3 - x_4)) xx y_3 + ((x - x_0)(x - x_1)(x - x_2)(x - x_3))/((x_4 - x_0)(x_4 - x_1)(x_4 - x_2)(x_4 - x_3)) xx y_4`

`y(1) = ((1 - 0)(1 - 3)(1 - 6)(1 - 7))/((-1 - 0)(-1 - 3)(-1 - 6)(-1 - 7)) xx 3 + ((1 - -1)(1 - 3)(1 - 6)(1 - 7))/((0 - -1)(0 - 3)(0 - 6)(0 - 7)) xx -6 + ((1 - -1)(1 - 0)(1 - 6)(1 - 7))/((3 - -1)(3 - 0)(3 - 6)(3 - 7)) xx 39 + ((1 - -1)(1 - 0)(1 - 3)(1 - 7))/((6 - -1)(6 - 0)(6 - 3)(6 - 7)) xx 822 + ((1 - -1)(1 - 0)(1 - 3)(1 - 6))/((7 - -1)(7 - 0)(7 - 3)(7 - 6)) xx 1611`

`y(1) = ((1)(-2)(-5)(-6))/((-1)(-4)(-7)(-8)) xx 3 + ((2)(-2)(-5)(-6))/((1)(-3)(-6)(-7)) xx -6 + ((2)(1)(-5)(-6))/((4)(3)(-3)(-4)) xx 39 + ((2)(1)(-2)(-6))/((7)(6)(3)(-1)) xx 822 + ((2)(1)(-2)(-5))/((8)(7)(4)(1)) xx 1611`

`y(1) = (-0.2679) xx 3 + 0.9524 xx -6 + 0.4167 xx 39 + (-0.1905) xx 822 + 0.0893 xx 1611`

`y(1) = -3`


Solution of the polynomial at point `1` is `y(1) = -3`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
5. Lagrange's Inverse Interpolation formula
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.