Home > Numerical methods calculators > Numerical Interpolation using Stirling's formula example

8. Stirling's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)

2. Example-2





2. Find Solution using Stirling's formula
xf(x)
100.23967
110.28060
120.31788
130.35209
140.38368

x = 12.2


Solution:
The value of table for `x` and `y`

x1011121314
y0.239670.28060.317880.352090.38368

Stirling's method to find solution

`h=11-10=1`

Taking `x_0=12` then `p=(x-x_0)/h=(x-12)/1`

The difference table is
`x``p=(x-12)/1``y``Deltay``Delta^2y``Delta^3y``Delta^4y`
10-20.23967
0.04093
11-10.2806-0.00365
0.037280.00058
1200.31788-0.00307-0.00013
0.034210.00045
1310.35209-0.00262
0.03159
1420.38368


`x = 12.2`

`p = (x - x_0)/h = (12.2 - 12)/1 = 0.2`

`y_0=0.31788, Delta y_0=0.03421,Delta^2y_(-1)=-0.00307,Delta^3y_(-1)=0.00045,Delta^4y_(-2)=-0.00013`

Stirling's formula is
`y_p=y_0+p*(Delta y_0+Delta y_(-1))/2 + (p^2)/(2!) * Delta^2y_(-1) + (p(p^2 - 1^2))/(3!) * (Delta^3y_(-1)+Delta^3y_(-2))/2 + (p^2(p^2 - 1^2))/(4!) * Delta^4y_(-2)`

`y_(0.2) = 0.31788 + (0.2)*((0.03421+0.03728))/2 + ((0.04))/(2)*(-0.00307) + ((0.2)(0.04 - 1))/(6)*((0.00045+0.00058))/2 + ((0.04)(0.04 - 1))/(24)*(-0.00013)`

`y_(0.2)=0.31788+0.007149 -0.0000614 -0.00001648 +0.000000208`

`y_(0.2)=0.324951`


Solution of Stirling's interpolation is `y(12.2) = 0.324951`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula & Example-1
(Previous example)
3. Example-3
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.