Home > Numerical methods calculators > Numerical Interpolation using Stirling's formula example

8. Stirling's formula (Numerical Interpolation) example ( Enter your problem )
  1. Formula & Example-1
  2. Example-2
  3. Example-3
Other related methods
  1. Newton's Forward Difference formula
  2. Newton's Backward Difference formula
  3. Newton's Divided Difference Interpolation formula
  4. Lagrange's Interpolation formula
  5. Lagrange's Inverse Interpolation formula
  6. Gauss Forward formula
  7. Gauss Backward formula
  8. Stirling's formula
  9. Bessel's formula
  10. Everett's formula
  11. Hermite's formula
  12. Missing terms in interpolation table

2. Example-2
(Previous example)
9. Bessel's formula
(Next method)

3. Example-3





Find Solution using Stirling's formula
xf(x)
00
50.0875
100.1763
150.2679
200.3640
250.4663
300.5774

x = 16
Finding f(2)


Solution:
The value of table for `x` and `y`

x051015202530
y00.08750.17630.26790.3640.46630.5774

Stirling's method to find solution

`h=5-0=5`

Taking `x_0=15` then `p=(x-x_0)/h=(x-15)/5`

The difference table is
`x``p=(x-15)/5``y``Deltay``Delta^2y``Delta^3y``Delta^4y``Delta^5y``Delta^6y`
0-30
0.0875
5-20.08750.0013
0.08880.0015
10-10.17630.00280.0002
0.09160.0017-0.0002
1500.26790.004500.0011
0.09610.00170.0009
2010.3640.00620.0009
0.10230.0026
2520.46630.0088
0.1111
3030.5774


`x = 16`

`p = (x - x_0)/h = (16 - 15)/5 = 0.2`

`y_0=0.2679, Delta y_0=0.0961,Delta^2y_(-1)=0.0045,Delta^3y_(-1)=0.0017,Delta^4y_(-2)=0,Delta^5y_(-2)=0.0009,Delta^6y_(-3)=0.0011`

Stirling's formula is
`y_p=y_0+p*(Delta y_0+Delta y_(-1))/2 + (p^2)/(2!) * Delta^2y_(-1) + (p(p^2 - 1^2))/(3!) * (Delta^3y_(-1)+Delta^3y_(-2))/2 + (p^2(p^2 - 1^2))/(4!) * Delta^4y_(-2) + (p(p^2 - 1^2)(p^2 - 2^2))/(5!) * (Delta^5y_(-2)+Delta^5y_(-3))/2 + (p^2(p^2 - 1^2)(p^2 - 2^2))/(6!) * Delta^6y_(-3)`

`y_(0.2) = 0.2679 + (0.2)*((0.0961+0.0916))/2 + ((0.04))/(2)*(0.0045) + ((0.2)(0.04 - 1))/(6)*((0.0017+0.0017))/2 + ((0.04)(0.04 - 1))/(24)*(0) + ((0.2)(0.04 - 1)(0.04 - 4))/(120)*((0.0009))/2 + ((0.04)(0.04 - 1)(0.04 - 4))/(720)*(0.0011)`

`y_(0.2)=0.2679+0.01877 +0.00009 -0.0000544 +0 +0.0000022176 +0.0000002323`

`y_(0.2)=0.2867`


Solution of Stirling's interpolation is `y(16) = 0.2867`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-2
(Previous example)
9. Bessel's formula
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.