Home > Matrix & Vector calculators > Column Space example

27. Column Space example ( Enter your problem )
  1. Example `[[1,-2,0,3,-4],[3,2,8,1,4],[2,3,7,2,3],[-1,2,0,4,-3]]`
  2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]`
  3. Example `[[3,-1,-1],[2,-2,1]]`
  4. Example `[[-2,2,6,0],[0,6,7,5],[1,5,4,5]]`
Other related methods
  1. Transforming matrix to Row Echelon Form
  2. Transforming matrix to Reduced Row Echelon Form
  3. Rank of matrix
  4. Characteristic polynomial of matrix
  5. Eigenvalues
  6. Eigenvectors (Eigenspace)
  7. Triangular Matrix
  8. LU decomposition using Gauss Elimination method of matrix
  9. LU decomposition using Doolittle's method of matrix
  10. LU decomposition using Crout's method of matrix
  11. Diagonal Matrix
  12. Cholesky Decomposition
  13. QR Decomposition (Gram Schmidt Method)
  14. QR Decomposition (Householder Method)
  15. LQ Decomposition
  16. Pivots
  17. Singular Value Decomposition (SVD)
  18. Moore-Penrose Pseudoinverse
  19. Power Method for dominant eigenvalue
  20. Determinant by gaussian elimination
  21. Expanding determinant along row / column
  22. Determinants using montante (bareiss algorithm)
  23. Leibniz formula for determinant
  24. determinants using Sarrus Rule
  25. determinants using properties of determinants
  26. Row Space
  27. Column Space
  28. Null Space

26. Row Space
(Previous method)
2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]`
(Next example)

1. Example `[[1,-2,0,3,-4],[3,2,8,1,4],[2,3,7,2,3],[-1,2,0,4,-3]]`





1. Find Column Space ...
`[[1,-2,0,3,-4],[3,2,8,1,4],[2,3,7,2,3],[-1,2,0,4,-3]]`


Solution:
`1``-2``0``3``-4`
`3``2``8``1``4`
`2``3``7``2``3`
`-1``2``0``4``-3`


Now, reduce the matrix to row echelon form
interchanging rows `R_1 harr R_2`

 = 
`3``2``8``1``4`
`1``-2``0``3``-4`
`2``3``7``2``3`
`-1``2``0``4``-3`


`R_2 larr R_2-1/3xx R_1`

 = 
`3``2``8``1``4`
`0``-8/3``-8/3``8/3``-16/3`
`2``3``7``2``3`
`-1``2``0``4``-3`


`R_3 larr R_3-2/3xx R_1`

 = 
`3``2``8``1``4`
`0``-8/3``-8/3``8/3``-16/3`
`0``5/3``5/3``4/3``1/3`
`-1``2``0``4``-3`


`R_4 larr R_4+1/3xx R_1`

 = 
`3``2``8``1``4`
`0``-8/3``-8/3``8/3``-16/3`
`0``5/3``5/3``4/3``1/3`
`0``8/3``8/3``13/3``-5/3`


`R_3 larr R_3+5/8xx R_2`

 = 
`3``2``8``1``4`
`0``-8/3``-8/3``8/3``-16/3`
`0``0``0``3``-3`
`0``8/3``8/3``13/3``-5/3`


`R_4 larr R_4+ R_2`

 = 
`3``2``8``1``4`
`0``-8/3``-8/3``8/3``-16/3`
`0``0``0``3``-3`
`0``0``0``7``-7`


interchanging rows `R_3 harr R_4`

 = 
`3``2``8``1``4`
`0``-8/3``-8/3``8/3``-16/3`
`0``0``0``7``-7`
`0``0``0``3``-3`


`R_4 larr R_4-3/7xx R_3`

 = 
`3``2``8``1``4`
`0``-8/3``-8/3``8/3``-16/3`
`0``0``0``7``-7`
`0``0``0``0``0`


The rank of a matrix is the number of non all-zeros rows
`:. Rank = 3`

Column Space :
The matrix has 3 pivots and Pivots are in the columns 1,2 and 4.
We know that these columns in the original matrix define the column space of the matrix.
`:.` The Column Space is

`[[1],[3],[2],[-1]],[[-2],[2],[3],[2]],[[3],[1],[2],[4]]`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



26. Row Space
(Previous method)
2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]`
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.