|
|
Home > Matrix & Vector calculators > Transforming matrix to Reduced Row Echelon Form example
|
|
2. Transforming matrix to Reduced Row Echelon Form example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
1. Find Transforming matrix to Reduced Row Echelon Form ... `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
Solution: Reduced row echelon form Given matrix
| | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
`R_1 larr R_1-:8`
= | | `1` | `-0.75` | `0.25` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
`R_2 larr R_2+6xx R_1`
= | | `1` | `-0.75` | `0.25` | | | `0` | `2.5` | `-2.5` | | | `2` | `-4` | `3` | |
|
`R_3 larr R_3-2xx R_1`
= | | `1` | `-0.75` | `0.25` | | | `0` | `2.5` | `-2.5` | | | `0` | `-2.5` | `2.5` | |
|
`R_2 larr R_2xx0.4`
= | | `1` | `-0.75` | `0.25` | | | `0` | `1` | `-1` | | | `0` | `-2.5` | `2.5` | |
|
`R_1 larr R_1+0.75xx R_2`
= | | `1` | `0` | `-0.5` | | | `0` | `1` | `-1` | | | `0` | `-2.5` | `2.5` | |
|
`R_3 larr R_3+2.5xx R_2`
= | | `1` | `0` | `-0.5` | | | `0` | `1` | `-1` | | | `0` | `0` | `0` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|