Home > Matrix & Vector calculators > Determinants using Sarrus Rule example

20. determinants using Sarrus Rule example ( Enter your problem )
  1. Example `[[1,2,3],[4,5,6],[7,8,9]]`
  2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
  3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
  4. Example `[[1,2,3],[0,1,0],[2,3,1]]`
Other related methods
  1. Transforming matrix to Row Echelon Form
  2. Transforming matrix to Reduced Row Echelon Form
  3. Rank of matrix
  4. Characteristic polynomial of matrix
  5. Eigenvalues
  6. Eigenvectors (Eigenspace)
  7. Triangular Matrix
  8. LU decomposition using Gauss Elimination method of matrix
  9. LU decomposition using Doolittle's method of matrix
  10. LU decomposition using Crout's method of matrix
  11. Diagonal Matrix
  12. Cholesky Decomposition
  13. QR Decomposition (Gram Schmidt Method)
  14. QR Decomposition (Householder Method)
  15. LQ Decomposition
  16. Pivots
  17. Singular Value Decomposition (SVD)
  18. Moore-Penrose Pseudoinverse
  19. Power Method for dominant eigenvalue
  20. determinants using Sarrus Rule
  21. determinants using properties of determinants
  22. Row Space
  23. Column Space
  24. Null Space

19. Power Method for dominant eigenvalue
(Previous method)
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
(Next example)

1. Example `[[1,2,3],[4,5,6],[7,8,9]]`





1. Find determinants using Sarrus Rule ...
`[[1,2,3],[4,5,6],[7,8,9]]`


Solution:
 `A=` 
 1  2  3 
 4  5  6 
 7  8  9 


Write first 2 columns of matrix to right of 3rd column, so we have total 5 columns.
 `A=` 
 1  2  3  1  2 
 4  5  6  4  5 
 7  8  9  7  8 


 `A=` 
  1    2    3    1    2  
  4    5    6    4    5  
  7    8    9    7    8  


Now, add products of diagonals going from top to bottom (blue lines) and subtract products of diagonals going from bottom to top (red lines).

`={1*5*9+2*6*7+3*4*8}-{7*5*3+8*6*1+9*4*2}`

`=(45+84+96)-(105+48+72)`

`=225-225`

`=0`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



19. Power Method for dominant eigenvalue
(Previous method)
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.