1. Find Determinants using montante (bareiss algorithm) ...
`[[8,-6,2],[-6,7,-4],[2,-4,3]]`Solution:`A` | = | | `8` | `-6` | `2` | | | `-6` | `7` | `-4` | | | `2` | `-4` | `3` | |
|
Step-0: Previous Pivot `=1`
Step-1: Pivot `=A_(1,1)=8`, Previous Pivot `=1`
`A_(i,j)=(A_(1,1) * A_(i,j) - A_(i,1) * A_(1,j))/(1)`, where `i>1` and `j>1`
`A_(2,2)=(8 * 7 - -6 * -6)/(1)=20`
`A_(2,3)=(8 * -4 - -6 * 2)/(1)=-20`
`A_(3,2)=(8 * -4 - 2 * -6)/(1)=-20`
`A_(3,3)=(8 * 3 - 2 * 2)/(1)=20`
So matrix becomes
`A` | = | | `8` | `-6` | `2` | | | `-6` | `20` | `-20` | | | `2` | `-20` | `20` | |
|
Step-2: Pivot `=A_(2,2)=20`, Previous Pivot `=8`
`A_(i,j)=(A_(2,2) * A_(i,j) - A_(i,2) * A_(2,j))/(8)`, where `i>2` and `j>2`
`A_(3,3)=(20 * 20 - -20 * -20)/(8)=0`
So matrix becomes
`A` | = | | `8` | `-6` | `2` | | | `-6` | `20` | `-20` | | | `2` | `-20` | `0` | |
|
Determinant will be `A_(3,3)` multiplied by the scaling factor 1
`:.` Determinant `=0`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then