Find Matrix Eigenvalues ...
`[[8,-6,2],[-6,7,-4],[2,-4,3]]`Solution:`|A-lamdaI|=0`
| `(8-lamda)` | `-6` | `2` | | | `-6` | `(7-lamda)` | `-4` | | | `2` | `-4` | `(3-lamda)` | |
| = 0 |
`:.(8-lamda)((7-lamda) × (3-lamda) - (-4) × (-4))-(-6)((-6) × (3-lamda) - (-4) × 2)+2((-6) × (-4) - (7-lamda) × 2)=0`
`:.(8-lamda)((21-10lamda+lamda^2)-16)+6((-18+6lamda)-(-8))+2(24-(14-2lamda))=0`
`:.(8-lamda)(5-10lamda+lamda^2)+6(-10+6lamda)+2(10+2lamda)=0`
`:. (40-85lamda+18lamda^2-lamda^3)+(-60+36lamda)+(20+4lamda)=0`
`:.(-lamda^3+18lamda^2-45lamda)=0`
`:.-lamda(lamda-3)(lamda-15)=0`
`:.lamda=0 or (lamda-3)=0 or (lamda-15)=0`
`:.lamda=0 or lamda=3 or lamda=15`
`:.` The eigenvalues of the matrix `A` are given by `lamda=0,3,15`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then