|
|
|
|
20. Determinant by gaussian elimination example
( Enter your problem )
|
- Example `[[2,1,3],[4,2,1],[1,3,2]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,0,4,2],[1,2,6,2],[2,0,8,8],[2,1,9,4]]`
- Example `[[3,0,0,3,0],[-3,0,-2,0,0],[0,-1,0,0,-3],[0,0,0,3,3],[0,-1,2,0,1]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[2,1,3],[4,2,1],[1,3,2]]`
1. Find Determinant by gaussian elimination ... `[[2,1,3],[4,2,1],[1,3,2]]`Solution:Row echelon form Given matrix | | `2` | `1` | `3` | | | `4` | `2` | `1` | | | `1` | `3` | `2` | |
|
`R_2 larr R_2-2xx R_1` = | | `2` | `1` | `3` | | | `0` | `0` | `-5` | | | `1` | `3` | `2` | |
|
`R_3 larr R_3-0.5xx R_1` = | | `2` | `1` | `3` | | | `0` | `0` | `-5` | | | `0` | `2.5` | `0.5` | |
|
After interchanging rows `R_2 harr R_3`, Sign of determinant is changed = - | | `2` | `1` | `3` | | | `0` | `2.5` | `0.5` | | | `0` | `0` | `-5` | |
|
`=-(2*2.5*(-5))` `=25`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|