Home > Matrix & Vector calculators > Eigenvectors example

6. Eigenvectors (Eigenspace) example ( Enter your problem )
  1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
  2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
  3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
  4. Example `[[2,3],[4,10]]`
Other related methods
  1. Transforming matrix to Row Echelon Form
  2. Transforming matrix to Reduced Row Echelon Form
  3. Rank of matrix
  4. Characteristic polynomial of matrix
  5. Eigenvalues
  6. Eigenvectors (Eigenspace)
  7. Triangular Matrix
  8. LU decomposition using Gauss Elimination method of matrix
  9. LU decomposition using Doolittle's method of matrix
  10. LU decomposition using Crout's method of matrix
  11. Diagonal Matrix
  12. Cholesky Decomposition
  13. QR Decomposition (Gram Schmidt Method)
  14. QR Decomposition (Householder Method)
  15. LQ Decomposition
  16. Pivots
  17. Singular Value Decomposition (SVD)
  18. Moore-Penrose Pseudoinverse
  19. Power Method for dominant eigenvalue
  20. determinants using Sarrus Rule
  21. determinants using properties of determinants
  22. Row Space
  23. Column Space
  24. Null Space

5. Eigenvalues
(Previous method)
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
(Next example)

1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`





1. `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
Find eigenvectors ...


`|A-lamdaI|=0`

`|[(8-lamda),-6,2],[-6,(7-lamda),-4],[2,-4,(3-lamda)]|=0`

`(8-lamda)((7-lamda) × (3-lamda) - (-4) × (-4))-(-6)((-6) × (3-lamda) - (-4) × 2)+2((-6) × (-4) - (7-lamda) × 2)=0`

`(8-lamda)((21-10lamda+lamda^2)-16)+6((-18+6lamda)-(-8))+2(24-(14-2lamda))=0`

`(8-lamda)(5-10lamda+lamda^2)+6(-10+6lamda)+2(10+2lamda)=0`

` (40-85lamda+18lamda^2-lamda^3)+(-60+36lamda)+(20+4lamda)=0`

`(-lamda^3+18lamda^2-45lamda)=0`

`-lamda(lamda-3)(lamda-15)=0`

`:.` the eigenvalues of the matrix A are given by `lamda=0,3,15`



1. Eigenvectors for `lamda=0`

`A-lamdaI = [[8,-6,2],[-6,7,-4],[2,-4,3]]-0[[1,0,0],[0,1,0],[0,0,1]]`

`=[[8,-6,2],[-6,7,-4],[2,-4,3]]`

Now, reduce this matrix
Dividing `R_1` by `8`

`=[[1,-3/4,1/4],[-6,7,-4],[2,-4,3]]`

`R_2 larr R_2 + 6 * R1`

`=[[1,-3/4,1/4],[0,5/2,-5/2],[2,-4,3]]`

`R_3 larr R_3 - 2 * R_1`

`=[[1,-3/4,1/4],[0,5/2,-5/2],[0,-5/2,5/2]]`

Dividing `R_2` by `5/2`

`=[[1,-3/4,1/4],[0,1,-1],[0,-5/2,5/2]]`

`R_1 larr R_1 + 3/4 * R2`

`=[[1,0,-1/2],[0,1,-1],[0,-5/2,5/2]]`

`R_3 larr R_3 + 5/2 * R2`

`=[[1,0,-1/2],[0,1,-1],[0,0,0]]`

The system associated with the eigenvalue `lamda=0`

`(A-0I)[[x_1],[x_2],[x_3]]=[[1,0,-1/2],[0,1,-1],[0,0,0]][[x_1],[x_2],[x_3]]=[[0],[0],[0]]`

`i.e.`

`x_1-1/2x_3=0`

`x_2-x_3=0`

`i.e.`

`x_1=1/2x_3`

`x_2=x_3`

`:.` eigenvector corresponding to the eigenvalue `lamda=0` is

`v=[[1/2x_3],[x_3],[x_3]]`

Let `x_3=1`

`v_1=[[1/2],[1],[1]]`



2. Eigenvectors for `lamda=3`

`A-lamdaI = [[8,-6,2],[-6,7,-4],[2,-4,3]]-3[[1,0,0],[0,1,0],[0,0,1]]`

`=[[8,-6,2],[-6,7,-4],[2,-4,3]]-[[3,0,0],[0,3,0],[0,0,3]]`

`=[[5,-6,2],[-6,4,-4],[2,-4,0]]`

Now, reduce this matrix
Dividing `R_1` by `5`

`=[[1,-6/5,2/5],[-6,4,-4],[2,-4,0]]`

`R_2 larr R_2 + 6 * R1`

`=[[1,-6/5,2/5],[0,-16/5,-8/5],[2,-4,0]]`

`R_3 larr R_3 - 2 * R_1`

`=[[1,-6/5,2/5],[0,-16/5,-8/5],[0,-8/5,-4/5]]`

Dividing `R_2` by `-16/5`

`=[[1,-6/5,2/5],[0,1,1/2],[0,-8/5,-4/5]]`

`R_1 larr R_1 + 6/5 * R2`

`=[[1,0,1],[0,1,1/2],[0,-8/5,-4/5]]`

`R_3 larr R_3 + 8/5 * R2`

`=[[1,0,1],[0,1,1/2],[0,0,0]]`

The system associated with the eigenvalue `lamda=3`

`(A-3I)[[x_1],[x_2],[x_3]]=[[1,0,1],[0,1,1/2],[0,0,0]][[x_1],[x_2],[x_3]]=[[0],[0],[0]]`

`i.e.`

`x_1+x_3=0`

`x_2+1/2x_3=0`

`i.e.`

`x_1=-x_3`

`x_2=-1/2x_3`

`:.` eigenvector corresponding to the eigenvalue `lamda=3` is

`v=[[-x_3],[-1/2x_3],[x_3]]`

Let `x_3=1`

`v_2=[[-1],[-1/2],[1]]`



3. Eigenvectors for `lamda=15`

`A-lamdaI = [[8,-6,2],[-6,7,-4],[2,-4,3]]-15[[1,0,0],[0,1,0],[0,0,1]]`

`=[[8,-6,2],[-6,7,-4],[2,-4,3]]-[[15,0,0],[0,15,0],[0,0,15]]`

`=[[-7,-6,2],[-6,-8,-4],[2,-4,-12]]`

Now, reduce this matrix
Dividing `R_1` by `-7`

`=[[1,6/7,-2/7],[-6,-8,-4],[2,-4,-12]]`

`R_2 larr R_2 + 6 * R1`

`=[[1,6/7,-2/7],[0,-20/7,-40/7],[2,-4,-12]]`

`R_3 larr R_3 - 2 * R_1`

`=[[1,6/7,-2/7],[0,-20/7,-40/7],[0,-40/7,-80/7]]`

Dividing `R_2` by `-20/7`

`=[[1,6/7,-2/7],[0,1,2],[0,-40/7,-80/7]]`

`R_1 larr R_1 - 6/7 * R_2`

`=[[1,0,-2],[0,1,2],[0,-40/7,-80/7]]`

`R_3 larr R_3 + 40/7 * R2`

`=[[1,0,-2],[0,1,2],[0,0,0]]`

The system associated with the eigenvalue `lamda=15`

`(A-15I)[[x_1],[x_2],[x_3]]=[[1,0,-2],[0,1,2],[0,0,0]][[x_1],[x_2],[x_3]]=[[0],[0],[0]]`

`i.e.`

`x_1-2x_3=0`

`x_2+2x_3=0`

`i.e.`

`x_1=2x_3`

`x_2=-2x_3`

`:.` eigenvector corresponding to the eigenvalue `lamda=15` is

`v=[[2x_3],[-2x_3],[x_3]]`

Let `x_3=1`

`v_3=[[2],[-2],[1]]`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Eigenvalues
(Previous method)
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.