|
|
Home > Matrix & Vector calculators > value of determinant using properties of determinants example
|
|
21. determinants using properties of determinants example
( Enter your problem )
|
- Example `[[201,210,220],[151,155,140],[50,55,80]]`
- Example `[[100,205,105],[200,408,207],[300,608,310]]`
- Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]`
- Example `[[1977,1979,1981],[1940,1943,1946],[10,17,24]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[201,210,220],[151,155,140],[50,55,80]]` (Previous example) | 3. Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]` (Next example) |
2. Example `[[100,205,105],[200,408,207],[300,608,310]]`
3. Find value of determinant using properties of determinants ... `[[100,205,105],[200,408,207],[300,608,310]]`
Solution:
`A=` | | 100 | 205 | 105 | | | 200 | 408 | 207 | | | 300 | 608 | 310 | |
|
Now, `C_2 = C_2 - 2 xx C_1`
`=` | | 100 | 5 | 105 | | | 200 | 8 | 207 | | | 300 | 8 | 310 | |
|
Now, `C_3 = C_3 - C_1`
take 100 as a comman factor from `C_1`
`=100 xx [1 xx (8 × 10 - 7 × 8) -5 xx (2 × 10 - 7 × 3) +5 xx (2 × 8 - 8 × 3)]`
`=100 xx [1 xx (80 -56) -5 xx (20 -21) +5 xx (16 -24)]`
`=100 xx [1 xx (24) -5 xx (-1) +5 xx (-8)]`
`=100 xx [24 +5 -40]`
`=100 xx [-11]`
`=-1100`
4. Find value of determinant using properties of determinants ... `[[6,3,9],[1,0,2],[40,50,20]]`
Solution:
take 3 as a comman factor from `R_1`
take 10 as a comman factor from `R_3`
`=30 xx [2 xx (0 × 2 - 2 × 5) -1 xx (1 × 2 - 2 × 4) +3 xx (1 × 5 - 0 × 4)]`
`=30 xx [2 xx (0 -10) -1 xx (2 -8) +3 xx (5 +0)]`
`=30 xx [2 xx (-10) -1 xx (-6) +3 xx (5)]`
`=30 xx [-20 +6 +15]`
`=30 xx [1]`
`=30`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[201,210,220],[151,155,140],[50,55,80]]` (Previous example) | 3. Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|