Home > Matrix & Vector calculators > value of determinant using properties of determinants example

21. determinants using properties of determinants example ( Enter your problem )
  1. Example `[[201,210,220],[151,155,140],[50,55,80]]`
  2. Example `[[100,205,105],[200,408,207],[300,608,310]]`
  3. Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]`
  4. Example `[[1977,1979,1981],[1940,1943,1946],[10,17,24]]`
Other related methods
  1. Transforming matrix to Row Echelon Form
  2. Transforming matrix to Reduced Row Echelon Form
  3. Rank of matrix
  4. Characteristic polynomial of matrix
  5. Eigenvalues
  6. Eigenvectors (Eigenspace)
  7. Triangular Matrix
  8. LU decomposition using Gauss Elimination method of matrix
  9. LU decomposition using Doolittle's method of matrix
  10. LU decomposition using Crout's method of matrix
  11. Diagonal Matrix
  12. Cholesky Decomposition
  13. QR Decomposition (Gram Schmidt Method)
  14. QR Decomposition (Householder Method)
  15. LQ Decomposition
  16. Pivots
  17. Singular Value Decomposition (SVD)
  18. Moore-Penrose Pseudoinverse
  19. Power Method for dominant eigenvalue
  20. determinants using Sarrus Rule
  21. determinants using properties of determinants
  22. Row Space
  23. Column Space
  24. Null Space

1. Example `[[201,210,220],[151,155,140],[50,55,80]]`
(Previous example)
3. Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]`
(Next example)

2. Example `[[100,205,105],[200,408,207],[300,608,310]]`





3. Find value of determinant using properties of determinants ...
`[[100,205,105],[200,408,207],[300,608,310]]`


Solution:
 `A=` 
 100  205  105 
 200  408  207 
 300  608  310 


Now, `C_2 = C_2 - 2 xx C_1`

 `=` 
 100  5  105 
 200  8  207 
 300  8  310 


Now, `C_3 = C_3 - C_1`

 `=` 
 100  5  5 
 200  8  7 
 300  8  10 


take 100 as a comman factor from `C_1`

 `=100 xx ` 
 1  5  5 
 2  8  7 
 3  8  10 


`=100 xx [1 xx (8 × 10 - 7 × 8) -5 xx (2 × 10 - 7 × 3) +5 xx (2 × 8 - 8 × 3)]`

`=100 xx [1 xx (80 -56) -5 xx (20 -21) +5 xx (16 -24)]`

`=100 xx [1 xx (24) -5 xx (-1) +5 xx (-8)]`

`=100 xx [24 +5 -40]`

`=100 xx [-11]`

`=-1100`
4. Find value of determinant using properties of determinants ...
`[[6,3,9],[1,0,2],[40,50,20]]`


Solution:
 `A=` 
 6  3  9 
 1  0  2 
 40  50  20 


take 3 as a comman factor from `R_1`

 `=3 xx ` 
 2  1  3 
 1  0  2 
 40  50  20 


take 10 as a comman factor from `R_3`

 `=30 xx ` 
 2  1  3 
 1  0  2 
 4  5  2 


`=30 xx [2 xx (0 × 2 - 2 × 5) -1 xx (1 × 2 - 2 × 4) +3 xx (1 × 5 - 0 × 4)]`

`=30 xx [2 xx (0 -10) -1 xx (2 -8) +3 xx (5 +0)]`

`=30 xx [2 xx (-10) -1 xx (-6) +3 xx (5)]`

`=30 xx [-20 +6 +15]`

`=30 xx [1]`

`=30`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example `[[201,210,220],[151,155,140],[50,55,80]]`
(Previous example)
3. Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.