|
|
|
|
Home > Matrix & Vector calculators > value of determinant using properties of determinants example
|
|
|
26. determinants using properties of determinants example
( Enter your problem )
|
- Example `[[201,210,220],[151,155,140],[50,55,80]]`
- Example `[[100,205,105],[200,408,207],[300,608,310]]`
- Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]`
- Example `[[1977,1979,1981],[1940,1943,1946],[10,17,24]]`
|
Other related methods
- Transforming matrix to Row Echelon Form (ref)
- Transforming matrix to Reduced Row Echelon Form (rref)
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Inverse Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[201,210,220],[151,155,140],[50,55,80]]` (Previous example) | 3. Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]` (Next example) |
2. Example `[[100,205,105],[200,408,207],[300,608,310]]`
3. Find value of determinant using properties of determinants ... `[[100,205,105],[200,408,207],[300,608,310]]`Solution:| `A=` | | 100 | 205 | 105 | | | 200 | 408 | 207 | | | 300 | 608 | 310 | |
|
Now, `C_2=C_2 - 2 xx C_1` | `=` | | 100 | 5 | 105 | | | 200 | 8 | 207 | | | 300 | 8 | 310 | |
|
Now, `C_3=C_3 - C_1` take 100 as a comman factor from `C_1` `=100 xx [1 xx (8 × 10 - 7 × 8) -5 xx (2 × 10 - 7 × 3) +5 xx (2 × 8 - 8 × 3)]` `=100 xx [1 xx (80 -56) -5 xx (20 -21) +5 xx (16 -24)]` `=100 xx [1 xx (24) -5 xx (-1) +5 xx (-8)]` `=100 xx [24 +5 -40]` `=100 xx [-11]` `=-1100` Method-2: Determinant by expanding cofactors| `|A|` | = | | `100` | `205` | `105` | | | `200` | `408` | `207` | | | `300` | `608` | `310` | |
|
`=100 xx (408 × 310 - 207 × 608) -205 xx (200 × 310 - 207 × 300) +105 xx (200 × 608 - 408 × 300)` `=100 xx (126480 -125856) -205 xx (62000 -62100) +105 xx (121600 -122400)` `=100 xx (624) -205 xx (-100) +105 xx (-800)` `= 62400 +20500 -84000` `=-1100`
4. Find value of determinant using properties of determinants ... `[[6,3,9],[1,0,2],[40,50,20]]`Solution:take 3 as a comman factor from `R_1` take 10 as a comman factor from `R_3` `=30 xx [2 xx (0 × 2 - 2 × 5) -1 xx (1 × 2 - 2 × 4) +3 xx (1 × 5 - 0 × 4)]` `=30 xx [2 xx (0 -10) -1 xx (2 -8) +3 xx (5 +0)]` `=30 xx [2 xx (-10) -1 xx (-6) +3 xx (5)]` `=30 xx [-20 +6 +15]` `=30 xx [1]` `=30` Method-2: Determinant by expanding cofactors| `|A|` | = | | `6` | `3` | `9` | | | `1` | `0` | `2` | | | `40` | `50` | `20` | |
|
`=6 xx (0 × 20 - 2 × 50) -3 xx (1 × 20 - 2 × 40) +9 xx (1 × 50 - 0 × 40)` `=6 xx (0 -100) -3 xx (20 -80) +9 xx (50 +0)` `=6 xx (-100) -3 xx (-60) +9 xx (50)` `= -600 +180 +450` `=30`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[201,210,220],[151,155,140],[50,55,80]]` (Previous example) | 3. Example `[[2,1970,1978],[5,1960,1980],[7,1950,1978]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|
|