2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]` (Previous example) | 4. Example `[[-2,2,6,0],[0,6,7,5],[1,5,4,5]]` (Next example) |
3. Example `[[3,-1,-1],[2,-2,1]]`
Find Null Space ... `[[3,-1,-1],[2,-2,1]]`Solution:Now, reduce the matrix to reduced row echelon form `R_1 larr R_1-:3` = | | `1` | `-1/3` | `-1/3` | | | `2` | `-2` | `1` | |
|
`R_2 larr R_2-2xx R_1` = | | `1` | `-1/3` | `-1/3` | | | `0` | `-4/3` | `5/3` | |
|
`R_2 larr R_2xx(-3/4)` = | | `1` | `-1/3` | `-1/3` | | | `0` | `1` | `-5/4` | |
|
`R_1 larr R_1+1/3xx R_2` The rank of a matrix is the number of non all-zeros rows `:. Rank = 2` Null Space : Now, solve the matrix equation `x_1-3/4x_3=0` `x_2-5/4x_3=0` Add equation for each free variable `x_1-3/4x_3=0` `x_2-5/4x_3=0` `x_3=x_3` Solve for each variable in terms of the free variables `x_1=3/4x_3` `x_2=5/4x_3` `x_3=x_3` Convert this into vectors | = | | = | `[[3/4],[5/4],[1]]` | `x_3` |
Thus, the basis for the null space is `[[3/4],[5/4],[1]]`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]` (Previous example) | 4. Example `[[-2,2,6,0],[0,6,7,5],[1,5,4,5]]` (Next example) |
|