2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]` (Previous example) | 4. Example `[[-2,2,6,0],[0,6,7,5],[1,5,4,5]]` (Next example) |
3. Example `[[3,-1,-1],[2,-2,1]]`
Find Row Space ... `[[3,-1,-1],[2,-2,1]]`Solution:Now, reduce the matrix to reduced row echelon form `R_1 larr R_1-:3` = | | `1` | `-1/3` | `-1/3` | | | `2` | `-2` | `1` | |
|
`R_2 larr R_2-2xx R_1` = | | `1` | `-1/3` | `-1/3` | | | `0` | `-4/3` | `5/3` | |
|
`R_2 larr R_2xx-3/4` = | | `1` | `-1/3` | `-1/3` | | | `0` | `1` | `-5/4` | |
|
`R_1 larr R_1+1/3xx R_2` The rank of a matrix is the number of non all-zeros rows `:. Rank = 2` Row Space : The nonzero rows in the reduced row-echelon form are a basis for the row space of the matrix `[[1,0,-3/4]],` `[[0,1,-5/4]]`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]` (Previous example) | 4. Example `[[-2,2,6,0],[0,6,7,5],[1,5,4,5]]` (Next example) |
|