1. Example `[[1,-2,0,3,-4],[3,2,8,1,4],[2,3,7,2,3],[-1,2,0,4,-3]]` (Previous example) | 3. Example `[[3,-1,-1],[2,-2,1]]` (Next example) |
2. Example `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]`
Find Row Space ... `[[1,2,3,2],[3,0,1,8],[2,-2,-2,6]]`
Solution:
| `1` | `2` | `3` | `2` | | | `3` | `0` | `1` | `8` | | | `2` | `-2` | `-2` | `6` | |
Now, reduce the matrix to reduced row echelon form `R_2 larr R_2-3xx R_1`
= | | `1` | `2` | `3` | `2` | | | `0` | `-6` | `-8` | `2` | | | `2` | `-2` | `-2` | `6` | |
|
`R_3 larr R_3-2xx R_1`
= | | `1` | `2` | `3` | `2` | | | `0` | `-6` | `-8` | `2` | | | `0` | `-6` | `-8` | `2` | |
|
`R_2 larr R_2-:-6`
= | | `1` | `2` | `3` | `2` | | | `0` | `1` | `4/3` | `-1/3` | | | `0` | `-6` | `-8` | `2` | |
|
`R_1 larr R_1-2xx R_2`
= | | `1` | `0` | `1/3` | `8/3` | | | `0` | `1` | `4/3` | `-1/3` | | | `0` | `-6` | `-8` | `2` | |
|
`R_3 larr R_3+6xx R_2`
= | | `1` | `0` | `1/3` | `8/3` | | | `0` | `1` | `4/3` | `-1/3` | | | `0` | `0` | `0` | `0` | |
|
The rank of a matrix is the number of non all-zeros rows `:. Rank = 2`
Row Space : The nonzero rows in the reduced row-echelon form are a basis for the row space of the matrix `[[1,0,1/3,8/3]],`
`[[0,1,4/3,-1/3]]`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[1,-2,0,3,-4],[3,2,8,1,4],[2,3,7,2,3],[-1,2,0,4,-3]]` (Previous example) | 3. Example `[[3,-1,-1],[2,-2,1]]` (Next example) |
|