|
20. Inverse Power Method for finding dominant eigenvalue example
( Enter your problem )
|
- Example `[[2,3],[5,4]]`
- Example `[[1,6,1],[1,2,0],[0,0,3]]`
- Example `[[1,2,0],[-2,1,2],[1,3,1]]`
- Example `[[3,2],[1,4]]`
|
Other related methods
- Transforming matrix to Row Echelon Form (ref)
- Transforming matrix to Reduced Row Echelon Form (rref)
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Inverse Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[2,3],[5,4]]` (Previous example) | 3. Example `[[1,2,0],[-2,1,2],[1,3,1]]` (Next example) |
2. Example `[[1,6,1],[1,2,0],[0,0,3]]`
Find Inverse Power Method for finding dominant eigenvalue ... `[[1,6,1],[1,2,0],[0,0,3]]` `x_0` = Solution:| `A` | = | | `1` | `6` | `1` | | | `1` | `2` | `0` | | | `0` | `0` | `3` | |
|
1. Find `A^-1`| `|A|` | = | | `1` | `6` | `1` | | | `1` | `2` | `0` | | | `0` | `0` | `3` | |
|
`=1 xx (2 xx 3 - 0 xx 0) -6 xx (1 xx 3 - 0 xx 0) +1 xx (1 xx 0 - 2 xx 0)` `=1 xx (6 +0) -6 xx (3 +0) +1 xx (0 +0)` `=1 xx (6) -6 xx (3) +1 xx (0)` `= 6 -18 +0` `=-12` | `Adj(A)` | = | | Adj | | `1` | `6` | `1` | | | `1` | `2` | `0` | | | `0` | `0` | `3` | |
|
|
| = | | `+(2 xx 3 - 0 xx 0)` | `-(1 xx 3 - 0 xx 0)` | `+(1 xx 0 - 2 xx 0)` | | | `-(6 xx 3 - 1 xx 0)` | `+(1 xx 3 - 1 xx 0)` | `-(1 xx 0 - 6 xx 0)` | | | `+(6 xx 0 - 1 xx 2)` | `-(1 xx 0 - 1 xx 1)` | `+(1 xx 2 - 6 xx 1)` | |
| T |
|
| = | | `+(6 +0)` | `-(3 +0)` | `+(0 +0)` | | | `-(18 +0)` | `+(3 +0)` | `-(0 +0)` | | | `+(0 -2)` | `-(0 -1)` | `+(2 -6)` | |
| T |
|
| = | | `6` | `-3` | `0` | | | `-18` | `3` | `0` | | | `-2` | `1` | `-4` | |
| T |
|
| = | | `6` | `-18` | `-2` | | | `-3` | `3` | `1` | | | `0` | `0` | `-4` | |
|
`"Now, "A^(-1)=1/|A| xx Adj(A)` | = | `1/(-12) xx` | | `6` | `-18` | `-2` | | | `-3` | `3` | `1` | | | `0` | `0` | `-4` | |
|
| = | | `-0.5` | `1.5` | `0.1667` | | | `0.25` | `-0.25` | `-0.0833` | | | `0` | `0` | `0.3333` | |
|
| `A^-1=` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| `1^(st)` iteration :Multiply the matrix by the vector| `A^-1 x_0 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize the resulting vectorTo normalize, divide each element of vector by its largest absolute value, which is `1.1667` `2^(nd)` iteration :Repeat the multiplication| `A^-1 x_1 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `0.5595` `3^(rd)` iteration :Repeat the multiplication| `A^-1 x_2 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `1.1826` `4^(th)` iteration :Repeat the multiplication| `A^-1 x_3 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `0.9654` `5^(th)` iteration :Repeat the multiplication| `A^-1 x_4 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `1.0076` `6^(th)` iteration :Repeat the multiplication| `A^-1 x_5 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `0.9986` `7^(th)` iteration :Repeat the multiplication| `A^-1 x_6 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `1.0002` `8^(th)` iteration :Repeat the multiplication| `A^-1 x_7 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `1` `9^(th)` iteration :Repeat the multiplication| `A^-1 x_8 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `1` `10^(th)` iteration :Repeat the multiplication| `A^-1 x_9 =` | | -0.5 | 1.5 | 0.1667 | | | 0.25 | -0.25 | -0.0833 | | | 0 | 0 | 0.3333 | |
| | | `=` | | Normalize againThe largest absolute value is `1` `:.` The dominant eigenvalue `lamda=1` and the dominant eigenvector is :
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[2,3],[5,4]]` (Previous example) | 3. Example `[[1,2,0],[-2,1,2],[1,3,1]]` (Next example) |
|
|
|