|
|
Home > Matrix & Vector calculators > LQ Decomposition example
|
|
15. LQ Decomposition example
( Enter your problem )
|
- Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`
- Example `[[3,-6],[4,-8],[0,1]]`
- Example `[[1,-4],[2,3],[2,2]]`
- Example `[[1,2,4],[0,0,5],[0,3,6]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]` (Previous example) | 3. Example `[[1,-4],[2,3],[2,2]]` (Next example) |
2. Example `[[3,-6],[4,-8],[0,1]]`
Find LQ Decomposition ... `[[3,-6],[4,-8],[0,1]]`
Solution:
Suppose you want a `LQ` factorization of a matrix `A`, then you do a QR factorization of `A^T`, i.e., `A^T=UR`, where `U` is orthogonal and `R` is upper triangular. Then `A=LQ=R^TU^T` where `L=R^T` is lower triangular, and `Q=U^T` is orthogonal.
Now, UR Decomposition of `A'` by GramSchmidt Method
`r_(11)=||q_1'||=sqrt(3^2+(-6)^2)=sqrt(45)=6.7082`
`q_1 = 1/(||q_1'||) * q_1'` | = | `1/6.7082 * ` | | = | |
`r_(12)=q_1^T * a_2` | = | | `xx` | | `=8.9443` |
`q_2'` | `=a_2-r_(12) * q_1` | = | | = | |
`r_(22)=||q_2'||=sqrt(0^2+0^2)=sqrt(0)=0`
`q_2 = 1/(||q_2'||) * q_2'` | = | `1/0 * ` | | = | |
`r_(13)=q_1^T * a_3` | = | | `xx` | | `=-0.8944` |
`r_(23)=q_2^T * a_3` | = | | `xx` | | `=1/0` |
`q_3'` | `=a_3-r_(13) * q_1-r_(23) * q_2` | = | | = | |
`r_(33)=||q_3'||=sqrt(1/0^2+1/0^2)=sqrt(1/0)=1/0`
`q_3 = 1/(||q_3'||) * q_3'` | = | `1/1/0 * ` | | = | |
`U` | `=[q_1,q_2,q_3]` | = | | `0.4472` | `1/0` | `1/0` | | | `-0.8944` | `1/0` | `1/0` | |
|
`R` | = | | `r_(11)` | `r_(12)` | `r_(13)` | | | `0` | `r_(22)` | `r_(23)` | | | `0` | `0` | `r_(33)` | |
| = | | `6.7082` | `8.9443` | `-0.8944` | | | `0` | `0` | `1/0` | | | `0` | `0` | `1/0` | |
|
Now, L and Q from R and U
`L=R^T` | = | | `6.7082` | `0` | `0` | | | `8.9443` | `0` | `0` | | | `-0.8944` | `1/0` | `1/0` | |
|
`Q=U^T` | = | | `0.4472` | `-0.8944` | | | `1/0` | `1/0` | | | `1/0` | `1/0` | |
|
checking `L xx Q = A?`
`L xx Q` | = | | `6.7082` | `0` | `0` | | | `8.9443` | `0` | `0` | | | `-0.8944` | `1/0` | `1/0` | |
| `xx` | | `0.4472` | `-0.8944` | | | `1/0` | `1/0` | | | `1/0` | `1/0` | |
| = | | `1/0` | `1/0` | | | `1/0` | `1/0` | | | `1/0` | `1/0` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]` (Previous example) | 3. Example `[[1,-4],[2,3],[2,2]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|