2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Find LU Decomposition using Gauss Elimination method of Matrix ... `[[1,1,1],[-1,-3,-3],[2,4,4]]`Solution:`LU` decomposition : If we have a square matrix A, then an upper triangular matrix U can be obtained without pivoting under Gaussian Elimination method, and there exists lower triangular matrix L such that A=LU. | Here `A` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
Using Gaussian Elimination method `R_2 larr R_2-` `(-1)``xx R_1` `[:.L_(2,1)=color{blue}{-1}]` | = | | `1` | `1` | `1` | | | `0` | `-2` | `-2` | | | `2` | `4` | `4` | |
|
`R_3 larr R_3-` `(2)``xx R_1` `[:.L_(3,1)=color{blue}{2}]` | = | | `1` | `1` | `1` | | | `0` | `-2` | `-2` | | | `0` | `2` | `2` | |
|
`R_3 larr R_3-` `(-1)``xx R_2` `[:.L_(3,2)=color{blue}{-1}]` | = | | `1` | `1` | `1` | | | `0` | `-2` | `-2` | | | `0` | `0` | `0` | |
|
| `:.U` | = | | `1` | `1` | `1` | | | `0` | `-2` | `-2` | | | `0` | `0` | `0` | |
|
`L` is just made up of the multipliers we used in Gaussian elimination with 1s on the diagonal. | `:.L` | = | | `1` | `0` | `0` | | | `color{blue}{-1}` | `1` | `0` | | | `color{blue}{2}` | `color{blue}{-1}` | `1` | |
|
Now checking `A=LU` ? | `LU` | = | | `1` | `0` | `0` | | | `-1` | `1` | `0` | | | `2` | `-1` | `1` | |
| `xx` | | `1` | `1` | `1` | | | `0` | `-2` | `-2` | | | `0` | `0` | `0` | |
| = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
| And `A` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
|