2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Find Matrix Rank ... `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Solution:
Rank | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
Now, reduce this matrix interchanging rows `R_1 harr R_3`
= | | `2` | `4` | `4` | | | `-1` | `-3` | `-3` | | | `1` | `1` | `1` | |
|
`R_1 larr R_1-:2`
= | | `1` | `2` | `2` | | | `-1` | `-3` | `-3` | | | `1` | `1` | `1` | |
|
`R_2 larr R_2+ R_1`
= | | `1` | `2` | `2` | | | `0` | `-1` | `-1` | | | `1` | `1` | `1` | |
|
`R_3 larr R_3- R_1`
= | | `1` | `2` | `2` | | | `0` | `-1` | `-1` | | | `0` | `-1` | `-1` | |
|
`R_2 larr R_2-:-1`
= | | `1` | `2` | `2` | | | `0` | `1` | `1` | | | `0` | `-1` | `-1` | |
|
`R_3 larr R_3+ R_2`
= | | `1` | `2` | `2` | | | `0` | `1` | `1` | | | `0` | `0` | `0` | |
|
The rank of a matrix is the number of non all-zeros rows `:. Rank = 2`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
|