|
|
Home > Matrix & Vector calculators > LU decomposition using Doolittle's method of Matrix example
|
|
9. LU decomposition using Doolittle's method of matrix example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Find LU decomposition using Doolittle's method of Matrix ... `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Solution: Doolittle's method for LU decomposition Let `A=LU`
| `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| = | | `1` | `0` | `0` | | | `l_(21)` | `1` | `0` | | | `l_(31)` | `l_(32)` | `1` | |
| `xx` | | `u_(11)` | `u_(12)` | `u_(13)` | | | `0` | `u_(22)` | `u_(23)` | | | `0` | `0` | `u_(33)` | |
|
| `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| = | | `u_(11)` | `u_(12)` | `u_(13)` | | | `l_(21)u_(11)` | `l_(21)u_(12) + u_(22)` | `l_(21)u_(13) + u_(23)` | | | `l_(31)u_(11)` | `l_(31)u_(12) + l_(32)u_(22)` | `l_(31)u_(13) + l_(32)u_(23) + u_(33)` | |
|
This implies `u_(11)=1`
`u_(12)=1`
`u_(13)=1`
`l_(21)u_(11)=-1=>l_(21)xx1=-1=>l_(21)=-1`
`l_(21)u_(12) + u_(22)=-3=>(-1)xx1 + u_(22)=-3=>u_(22)=-2`
`l_(21)u_(13) + u_(23)=-3=>(-1)xx1 + u_(23)=-3=>u_(23)=-2`
`l_(31)u_(11)=2=>l_(31)xx1=2=>l_(31)=2`
`l_(31)u_(12) + l_(32)u_(22)=4=>2xx1 + l_(32)xx(-2)=4=>l_(32)=-1`
`l_(31)u_(13) + l_(32)u_(23) + u_(33)=4=>2xx1 + (-1)xx(-2) + u_(33)=4=>u_(33)=0`
`:.A=L xx U=LU`
| `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
| = | | `1` | `0` | `0` | | | `-1` | `1` | `0` | | | `2` | `-1` | `1` | |
| `xx` | | `1` | `1` | `1` | | | `0` | `-2` | `-2` | | | `0` | `0` | `0` | |
| = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[2,3],[4,10]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|