|
|
Home > Matrix & Vector calculators > Eigenvectors example
|
|
6. Eigenvectors (Eigenspace) example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
4. Example `[[2,3],[4,10]]`
Find Matrix Eigenvectors (Eigenspace) ... `[[2,3],[4,10]]`Solution:`|A-lamdaI|=0` | `(2-lamda)` | `3` | | | `4` | `(10-lamda)` | |
| = 0 |
`:.(2-lamda) × (10-lamda) - 3 × 4=0` `:.(20-12lamda+lamda^2)-12=0` `:.(lamda^2-12lamda+8)=0` `:.(lamda-0.7085)(lamda-11.2915)=0` `:.(lamda-0.7085)=0 or (lamda-11.2915)=0` `:.lamda=0.7085 or lamda=11.2915` `:.` The eigenvalues of the matrix `A` are given by `lamda=0.7085,11.2915` 1. Eigenvectors for `lamda=0.7085`
1. Eigenvectors for `lamda=0.7085` Now, reduce this matrix `R_1 larr R_1-:1.2915` `R_2 larr R_2-4xx R_1` The system associated with the eigenvalue `lamda=0.7085` `=>x_1+2.3229x_2=0` `=>x_1=-2.3229x_2` `:.` eigenvectors corresponding to the eigenvalue `lamda=0.7085` is Let `x_2=1` 2. Eigenvectors for `lamda=11.2915`
2. Eigenvectors for `lamda=11.2915` `A-lamdaI = ` | | - `11.2915` | |
Now, reduce this matrix `R_1 larr R_1-:(-9.2915)` `R_2 larr R_2-4xx R_1` The system associated with the eigenvalue `lamda=11.2915` `=>x_1-0.3229x_2=0` `=>x_1=0.3229x_2` `:.` eigenvectors corresponding to the eigenvalue `lamda=11.2915` is Let `x_2=1`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|