|
|
Home > Matrix & Vector calculators > Eigenvectors example
|
|
6. Eigenvectors (Eigenspace) example
( Enter your problem )
|
- Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
- Example `[[2,3],[4,10]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
4. Example `[[2,3],[4,10]]`
Find Matrix Eigenvectors (Eigenspace) ... `[[2,3],[4,10]]`
Solution: `|A-lamdaI|=0`
| `(2-lamda)` | `3` | | | `4` | `(10-lamda)` | |
| = 0 |
`:.(2-lamda) × (10-lamda) - 3 × 4=0`
`:.(20-12lamda+lamda^2)-12=0`
`:.(lamda^2-12lamda+8)=0`
`:.(lamda-0.70849738)(lamda-11.29150262)=0`
`:.(lamda-0.70849738)=0 or(lamda-11.29150262)=0 `
`:.` The eigenvalues of the matrix `A` are given by `lamda=0.70849738,11.29150262`,
1. Eigenvectors for `lamda=0.70849738`
1. Eigenvectors for `lamda=0.70849738` `A-lamdaI = ` | | - `0.70849738` | |
= | | `1.29150262` | `3` | | | `4` | `9.29150262` | |
|
Now, reduce this matrix interchanging rows `R_1 harr R_2` = | | `4` | `9.29150262` | | | `1.29150262` | `3` | |
|
`R_1 larr R_1-:4` = | | `1` | `2.32287566` | | | `1.29150262` | `3` | |
|
`R_2 larr R_2-1.29150262xx R_1` The system associated with the eigenvalue `lamda=0.70849738` `=>x_1+2.32287566x_2=0` `=>x_1=-2.32287566x_2` `:.` eigenvectors corresponding to the eigenvalue `lamda=0.70849738` is Let `x_2=1`
2. Eigenvectors for `lamda=11.29150262`
2. Eigenvectors for `lamda=11.29150262` `A-lamdaI = ` | | - `11.29150262` | |
= | | `-9.29150262` | `3` | | | `4` | `-1.29150262` | |
|
Now, reduce this matrix `R_1 larr R_1-:-9.29150262` = | | `1` | `-0.32287566` | | | `4` | `-1.29150262` | |
|
`R_2 larr R_2-4xx R_1` The system associated with the eigenvalue `lamda=11.29150262` `=>x_1-0.32287566x_2=0` `=>x_1=0.32287566x_2` `:.` eigenvectors corresponding to the eigenvalue `lamda=11.29150262` is Let `x_2=1`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|