1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find Determinants using montante (bareiss algorithm) ... `[[3,2,4],[2,0,2],[4,2,3]]`Solution:`A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
Step-0: Previous Pivot `=1` Step-1: Pivot `=A_(1,1)=3`, Previous Pivot `=1` `A_(i,j)=(A_(1,1) * A_(i,j) - A_(i,1) * A_(1,j))/(1)`, where `i>1` and `j>1` `A_(2,2)=(3 * 0 - 2 * 2)/(1)=-4` `A_(2,3)=(3 * 2 - 2 * 4)/(1)=-2` `A_(3,2)=(3 * 2 - 4 * 2)/(1)=-2` `A_(3,3)=(3 * 3 - 4 * 4)/(1)=-7` So matrix becomes `A` | = | | `3` | `2` | `4` | | | `2` | `-4` | `-2` | | | `4` | `-2` | `-7` | |
|
Step-2: Pivot `=A_(2,2)=-4`, Previous Pivot `=3` `A_(i,j)=(A_(2,2) * A_(i,j) - A_(i,2) * A_(2,j))/(3)`, where `i>2` and `j>2` `A_(3,3)=(-4 * -7 - -2 * -2)/(3)=8` So matrix becomes `A` | = | | `3` | `2` | `4` | | | `2` | `-4` | `-2` | | | `4` | `-2` | `8` | |
|
Determinant will be `A_(3,3)` multiplied by the scaling factor 1 `:.` Determinant `=8`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[8,-6,2],[-6,7,-4],[2,-4,3]]` (Previous example) | 3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]` (Next example) |
|