Find Determinants using montante (bareiss algorithm) ...
`[[1,2,3],[0,1,0],[2,3,1]]`Solution:`A` | = | | `1` | `2` | `3` | | | `0` | `1` | `0` | | | `2` | `3` | `1` | |
|
Step-0: Previous Pivot `=1`
Step-1: Pivot `=A_(1,1)=1`, Previous Pivot `=1`
`A_(i,j)=(A_(1,1) * A_(i,j) - A_(i,1) * A_(1,j))/(1)`, where `i>1` and `j>1`
`A_(2,2)=(1 * 1 - 0 * 2)/(1)=1`
`A_(2,3)=(1 * 0 - 0 * 3)/(1)=0`
`A_(3,2)=(1 * 3 - 2 * 2)/(1)=-1`
`A_(3,3)=(1 * 1 - 2 * 3)/(1)=-5`
So matrix becomes
`A` | = | | `1` | `2` | `3` | | | `0` | `1` | `0` | | | `2` | `-1` | `-5` | |
|
Step-2: Pivot `=A_(2,2)=1`, Previous Pivot `=1`
`A_(i,j)=(A_(2,2) * A_(i,j) - A_(i,2) * A_(2,j))/(1)`, where `i>2` and `j>2`
`A_(3,3)=(1 * -5 - -1 * 0)/(1)=-5`
So matrix becomes
`A` | = | | `1` | `2` | `3` | | | `0` | `1` | `0` | | | `2` | `-1` | `-5` | |
|
Determinant will be `A_(3,3)` multiplied by the scaling factor 1
`:.` Determinant `=-5`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then