2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[1,2,3],[0,1,0],[2,3,1]]` (Next example) |
3. Example `[[1,1,1],[-1,-3,-3],[2,4,4]]`
Find Determinants using montante (bareiss algorithm) ... `[[1,1,1],[-1,-3,-3],[2,4,4]]`Solution:`A` | = | | `1` | `1` | `1` | | | `-1` | `-3` | `-3` | | | `2` | `4` | `4` | |
|
Step-0: Previous Pivot `=1` Step-1: Pivot `=A_(1,1)=1`, Previous Pivot `=1` `A_(i,j)=(A_(1,1) * A_(i,j) - A_(i,1) * A_(1,j))/(1)`, where `i>1` and `j>1` `A_(2,2)=(1 * -3 - -1 * 1)/(1)=-2` `A_(2,3)=(1 * -3 - -1 * 1)/(1)=-2` `A_(3,2)=(1 * 4 - 2 * 1)/(1)=2` `A_(3,3)=(1 * 4 - 2 * 1)/(1)=2` So matrix becomes `A` | = | | `1` | `1` | `1` | | | `-1` | `-2` | `-2` | | | `2` | `2` | `2` | |
|
Step-2: Pivot `=A_(2,2)=-2`, Previous Pivot `=1` `A_(i,j)=(A_(2,2) * A_(i,j) - A_(i,2) * A_(2,j))/(1)`, where `i>2` and `j>2` `A_(3,3)=(-2 * 2 - 2 * -2)/(1)=0` So matrix becomes `A` | = | | `1` | `1` | `1` | | | `-1` | `-2` | `-2` | | | `2` | `2` | `0` | |
|
Determinant will be `A_(3,3)` multiplied by the scaling factor 1 `:.` Determinant `=0`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[1,2,3],[0,1,0],[2,3,1]]` (Next example) |
|