Find Power Method for finding dominant eigenvalue ...
`[[1,6,1],[1,2,0],[0,0,3]]`
`x_0` = 1,1,1Solution:`1^(st)` iteration :Multiply the matrix by the vectorNormalize the resulting vectorTo normalize, divide each element of vector by its largest absolute value, which is `8`
`2^(nd)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `3.625`
`3^(rd)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.2069`
`4^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0246`
`5^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0489`
`6^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0287`
`7^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0232`
`8^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0169`
`9^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0127`
`10^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0095`
`11^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0071`
`12^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0053`
`13^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.004`
`14^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.003`
`15^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0022`
`16^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0017`
`17^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0013`
`18^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0009`
`19^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0007`
`20^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0005`
`21^(st)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0004`
`22^(nd)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0003`
`23^(rd)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0002`
`24^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0002`
`25^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0001`
`26^(th)` iteration :Repeat the multiplicationNormalize againThe largest absolute value is `4.0001`
`:.` The dominant eigenvalue `lamda=4.0001~=4`
and the dominant eigenvector is :
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then