Home > Matrix & Vector calculators > Power Method for dominant eigenvalue example

19. Power Method for finding dominant eigenvalue example ( Enter your problem )
  1. Example `[[2,3],[5,4]]`
  2. Example `[[1,6,1],[1,2,0],[0,0,3]]`
  3. Example `[[1,2,0],[-2,1,2],[1,3,1]]`
  4. Example `[[3,2],[1,4]]`
Other related methods
  1. Transforming matrix to Row Echelon Form (ref)
  2. Transforming matrix to Reduced Row Echelon Form (rref)
  3. Rank of matrix
  4. Characteristic polynomial of matrix
  5. Eigenvalues
  6. Eigenvectors (Eigenspace)
  7. Triangular Matrix
  8. LU decomposition using Gauss Elimination method of matrix
  9. LU decomposition using Doolittle's method of matrix
  10. LU decomposition using Crout's method of matrix
  11. Diagonal Matrix
  12. Cholesky Decomposition
  13. QR Decomposition (Gram Schmidt Method)
  14. QR Decomposition (Householder Method)
  15. LQ Decomposition
  16. Pivots
  17. Singular Value Decomposition (SVD)
  18. Moore-Penrose Pseudoinverse
  19. Power Method for dominant eigenvalue
  20. Inverse Power Method for dominant eigenvalue
  21. Determinant by gaussian elimination
  22. Expanding determinant along row / column
  23. Determinants using montante (bareiss algorithm)
  24. Leibniz formula for determinant
  25. determinants using Sarrus Rule
  26. determinants using properties of determinants
  27. Row Space
  28. Column Space
  29. Null Space

3. Example `[[1,2,0],[-2,1,2],[1,3,1]]`
(Previous example)
20. Inverse Power Method for dominant eigenvalue
(Next method)

4. Example `[[3,2],[1,4]]`





Find Power Method for finding dominant eigenvalue ...
`[[3,2],[1,4]]`
`x_0` = -1,1


Solution:
 `A=` 
32
14


 `x_0=` 
-1
1


`1^(st)` iteration :

Multiply the matrix by the vector
 `A x_0 =` 
32
14
 
-1
1
 `=` 
-1
3


Normalize the resulting vector
To normalize, divide each element of vector by its largest absolute value, which is `3`

`x_1=``1/3`
-1
3
`=`
-0.3333
1


`2^(nd)` iteration :

Repeat the multiplication
 `A x_1 =` 
32
14
 
-0.3333
1
 `=` 
1
3.6667


Normalize again
The largest absolute value is `3.6667`

`x_2=``1/3.6667`
1
3.6667
`=`
0.2727
1


`3^(rd)` iteration :

Repeat the multiplication
 `A x_2 =` 
32
14
 
0.2727
1
 `=` 
2.8182
4.2727


Normalize again
The largest absolute value is `4.2727`

`x_3=``1/4.2727`
2.8182
4.2727
`=`
0.6596
1


`4^(th)` iteration :

Repeat the multiplication
 `A x_3 =` 
32
14
 
0.6596
1
 `=` 
3.9787
4.6596


Normalize again
The largest absolute value is `4.6596`

`x_4=``1/4.6596`
3.9787
4.6596
`=`
0.8539
1


`5^(th)` iteration :

Repeat the multiplication
 `A x_4 =` 
32
14
 
0.8539
1
 `=` 
4.5616
4.8539


Normalize again
The largest absolute value is `4.8539`

`x_5=``1/4.8539`
4.5616
4.8539
`=`
0.9398
1


`6^(th)` iteration :

Repeat the multiplication
 `A x_5 =` 
32
14
 
0.9398
1
 `=` 
4.8194
4.9398


Normalize again
The largest absolute value is `4.9398`

`x_6=``1/4.9398`
4.8194
4.9398
`=`
0.9756
1


`7^(th)` iteration :

Repeat the multiplication
 `A x_6 =` 
32
14
 
0.9756
1
 `=` 
4.9269
4.9756


Normalize again
The largest absolute value is `4.9756`

`x_7=``1/4.9756`
4.9269
4.9756
`=`
0.9902
1


`8^(th)` iteration :

Repeat the multiplication
 `A x_7 =` 
32
14
 
0.9902
1
 `=` 
4.9706
4.9902


Normalize again
The largest absolute value is `4.9902`

`x_8=``1/4.9902`
4.9706
4.9902
`=`
0.9961
1


`9^(th)` iteration :

Repeat the multiplication
 `A x_8 =` 
32
14
 
0.9961
1
 `=` 
4.9882
4.9961


Normalize again
The largest absolute value is `4.9961`

`x_9=``1/4.9961`
4.9882
4.9961
`=`
0.9984
1


`10^(th)` iteration :

Repeat the multiplication
 `A x_9 =` 
32
14
 
0.9984
1
 `=` 
4.9953
4.9984


Normalize again
The largest absolute value is `4.9984`

`x_10=``1/4.9984`
4.9953
4.9984
`=`
0.9994
1


`11^(th)` iteration :

Repeat the multiplication
 `A x_10 =` 
32
14
 
0.9994
1
 `=` 
4.9981
4.9994


Normalize again
The largest absolute value is `4.9994`

`x_11=``1/4.9994`
4.9981
4.9994
`=`
0.9997
1


`12^(th)` iteration :

Repeat the multiplication
 `A x_11 =` 
32
14
 
0.9997
1
 `=` 
4.9992
4.9997


Normalize again
The largest absolute value is `4.9997`

`x_12=``1/4.9997`
4.9992
4.9997
`=`
0.9999
1


`13^(th)` iteration :

Repeat the multiplication
 `A x_12 =` 
32
14
 
0.9999
1
 `=` 
4.9997
4.9999


Normalize again
The largest absolute value is `4.9999`

`x_13=``1/4.9999`
4.9997
4.9999
`=`
1
1


`:.` The dominant eigenvalue `lamda=4.9999~=5`

and the dominant eigenvector is :
`=`
1
1
`~=`
1
1





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example `[[1,2,0],[-2,1,2],[1,3,1]]`
(Previous example)
20. Inverse Power Method for dominant eigenvalue
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.