|
|
Home > Matrix & Vector calculators > QR Decomposition (Gram Schmidt Method) example
|
|
13. QR Decomposition (Gram Schmidt Method) example
( Enter your problem )
|
- Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,-4],[2,3],[2,2]]`
- Example `[[1,2,4],[0,0,5],[0,3,6]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]` (Previous example) | 3. Example `[[1,-4],[2,3],[2,2]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find QR Decomposition (Gram Schmidt Method) ... `[[3,2,4],[2,0,2],[4,2,3]]`Solution:Here `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
`r_(11)=||q_1'||=sqrt(3^2+2^2+4^2)=sqrt(29)=5.3852` `q_1 = 1/(||q_1'||) * q_1'` | = | `1/5.3852 * ` | | = | |
`r_(12)=q_1^T * a_2` | = | [ | `0.5571` | `0.3714` | `0.7428` | ] |
| `xx` | | `=2.5997` |
`q_2'` | `=a_2-r_(12) * q_1` | = | | = | |
`r_(22)=||q_2'||=sqrt(0.5517^2+(-0.9655)^2+0.069^2)=sqrt(1.2414)=1.1142` `q_2 = 1/(||q_2'||) * q_2'` | = | `1/1.1142 * ` | | = | | `0.4952` | | | `-0.8666` | | | `0.0619` | |
|
`r_(13)=q_1^T * a_3` | = | [ | `0.5571` | `0.3714` | `0.7428` | ] |
| `xx` | | `=5.1995` |
`r_(23)=q_2^T * a_3` | = | [ | `0.4952` | `-0.8666` | `0.0619` | ] |
| `xx` | | `=0.4333` |
`q_3'` | `=a_3-r_(13) * q_1-r_(23) * q_2` | = | | -5.1995 | | -0.4333 | | `0.4952` | | | `-0.8666` | | | `0.0619` | |
|
| = | | `0.8889` | | | `0.4444` | | | `-0.8889` | |
|
`r_(33)=||q_3'||=sqrt(0.8889^2+0.4444^2+(-0.8889)^2)=sqrt(1.7778)=1.3333` `q_3 = 1/(||q_3'||) * q_3'` | = | `1/1.3333 * ` | | `0.8889` | | | `0.4444` | | | `-0.8889` | |
| = | | `0.6667` | | | `0.3333` | | | `-0.6667` | |
|
`Q` | `=[q_1,q_2,q_3]` | = | | `0.5571` | `0.4952` | `0.6667` | | | `0.3714` | `-0.8666` | `0.3333` | | | `0.7428` | `0.0619` | `-0.6667` | |
|
`R` | = | | `r_(11)` | `r_(12)` | `r_(13)` | | | `0` | `r_(22)` | `r_(23)` | | | `0` | `0` | `r_(33)` | |
| = | | `5.3852` | `2.5997` | `5.1995` | | | `0` | `1.1142` | `0.4333` | | | `0` | `0` | `1.3333` | |
|
checking `Q xx R = A?` `Q xx R` | = | | `0.5571` | `0.4952` | `0.6667` | | | `0.3714` | `-0.8666` | `0.3333` | | | `0.7428` | `0.0619` | `-0.6667` | |
| `xx` | | `5.3852` | `2.5997` | `5.1995` | | | `0` | `1.1142` | `0.4333` | | | `0` | `0` | `1.3333` | |
| = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
and `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]` (Previous example) | 3. Example `[[1,-4],[2,3],[2,2]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|