|
|
Home > Matrix & Vector calculators > QR Decomposition (Gram Schmidt Method) example
|
|
13. QR Decomposition (Gram Schmidt Method) example
( Enter your problem )
|
- Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,-4],[2,3],[2,2]]`
- Example `[[1,2,4],[0,0,5],[0,3,6]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
1. Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]` (Previous example) | 3. Example `[[1,-4],[2,3],[2,2]]` (Next example) |
2. Example `[[3,2,4],[2,0,2],[4,2,3]]`
Find QR Decomposition (Gram Schmidt Method) ... `[[3,2,4],[2,0,2],[4,2,3]]`Solution:Here `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
`r_(11)=||q_1'||=sqrt((3)^2+(2)^2+(4)^2)=sqrt(29)=5.3851648071` `q_1 = 1/(||q_1'||) * q_1'` | = | `1/5.3851648071 * ` | | = | | `0.5570860145` | | | `0.3713906764` | | | `0.7427813527` | |
|
`r_(12)=q_1^T * a_2` | = | [ | `0.5570860145` | `0.3713906764` | `0.7427813527` | ] |
| `xx` | | `=2.5997347345` |
`q_2'` | `=a_2-r_(12) * q_1` | = | | `-2.5997347345` | | `0.5570860145` | | | `0.3713906764` | | | `0.7427813527` | |
|
| = | | `0.5517241379` | | | `-0.9655172414` | | | `0.0689655172` | |
|
`r_(22)=||q_2'||=sqrt((0.5517241379)^2+(-0.9655172414)^2+(0.0689655172)^2)=sqrt(1.2413793103)=1.1141720291` `q_2 = 1/(||q_2'||) * q_2'` | = | `1/1.1141720291 * ` | | `0.5517241379` | | | `-0.9655172414` | | | `0.0689655172` | |
| = | | `0.4951875685` | | | `-0.8665782448` | | | `0.0618984461` | |
|
`r_(13)=q_1^T * a_3` | = | [ | `0.5570860145` | `0.3713906764` | `0.7427813527` | ] |
| `xx` | | `=5.199469469` |
`r_(23)=q_2^T * a_3` | = | [ | `0.4951875685` | `-0.8665782448` | `0.0618984461` | ] |
| `xx` | | `=0.4332891224` |
`q_3'` | `=a_3-r_(13) * q_1-r_(23) * q_2` | = | | `-5.199469469` | | `0.5570860145` | | | `0.3713906764` | | | `0.7427813527` | |
| `-0.4332891224` | | `0.4951875685` | | | `-0.8665782448` | | | `0.0618984461` | |
|
| = | | `0.8888888889` | | | `0.4444444444` | | | `-0.8888888889` | |
|
`r_(33)=||q_3'||=sqrt((0.8888888889)^2+(0.4444444444)^2+(-0.8888888889)^2)=sqrt(1.7777777778)=1.3333333333` `q_3 = 1/(||q_3'||) * q_3'` | = | `1/1.3333333333 * ` | | `0.8888888889` | | | `0.4444444444` | | | `-0.8888888889` | |
| = | | `0.6666666667` | | | `0.3333333333` | | | `-0.6666666667` | |
|
`Q` | `=[q_1,q_2,q_3]` | = | | `0.5570860145` | `0.4951875685` | `0.6666666667` | | | `0.3713906764` | `-0.8665782448` | `0.3333333333` | | | `0.7427813527` | `0.0618984461` | `-0.6666666667` | |
|
`R` | = | | `r_(11)` | `r_(12)` | `r_(13)` | | | `0` | `r_(22)` | `r_(23)` | | | `0` | `0` | `r_(33)` | |
| = | | `5.3851648071` | `2.5997347345` | `5.199469469` | | | `0` | `1.1141720291` | `0.4332891224` | | | `0` | `0` | `1.3333333333` | |
|
checking `Q xx R = A?` `Q xx R` | = | | `0.5570860145` | `0.4951875685` | `0.6666666667` | | | `0.3713906764` | `-0.8665782448` | `0.3333333333` | | | `0.7427813527` | `0.0618984461` | `-0.6666666667` | |
| `xx` | | `5.3851648071` | `2.5997347345` | `5.199469469` | | | `0` | `1.1141720291` | `0.4332891224` | | | `0` | `0` | `1.3333333333` | |
| = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
and `A` | = | | `3` | `2` | `4` | | | `2` | `0` | `2` | | | `4` | `2` | `3` | |
|
Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
1. Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]` (Previous example) | 3. Example `[[1,-4],[2,3],[2,2]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|