|
|
Home > Matrix & Vector calculators > QR Decomposition (Gram Schmidt Method) example
|
|
13. QR Decomposition (Gram Schmidt Method) example
( Enter your problem )
|
- Example `[[1,-1,4],[1,4,-2],[1,4,2],[1,-1,0]]`
- Example `[[3,2,4],[2,0,2],[4,2,3]]`
- Example `[[1,-4],[2,3],[2,2]]`
- Example `[[1,2,4],[0,0,5],[0,3,6]]`
|
Other related methods
- Transforming matrix to Row Echelon Form
- Transforming matrix to Reduced Row Echelon Form
- Rank of matrix
- Characteristic polynomial of matrix
- Eigenvalues
- Eigenvectors (Eigenspace)
- Triangular Matrix
- LU decomposition using Gauss Elimination method of matrix
- LU decomposition using Doolittle's method of matrix
- LU decomposition using Crout's method of matrix
- Diagonal Matrix
- Cholesky Decomposition
- QR Decomposition (Gram Schmidt Method)
- QR Decomposition (Householder Method)
- LQ Decomposition
- Pivots
- Singular Value Decomposition (SVD)
- Moore-Penrose Pseudoinverse
- Power Method for dominant eigenvalue
- Determinant by gaussian elimination
- Expanding determinant along row / column
- Determinants using montante (bareiss algorithm)
- Leibniz formula for determinant
- determinants using Sarrus Rule
- determinants using properties of determinants
- Row Space
- Column Space
- Null Space
|
|
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[1,2,4],[0,0,5],[0,3,6]]` (Next example) |
3. Example `[[1,-4],[2,3],[2,2]]`
Find QR Decomposition (Gram Schmidt Method) ... `[[1,-4],[2,3],[2,2]]`Solution:`r_(11)=||q_1'||=sqrt((1)^2+(2)^2+(2)^2)=sqrt(9)=3` `q_1 = 1/(||q_1'||) * q_1'` | = | `1/3 * ` | | = | | `0.3333333333` | | | `0.6666666667` | | | `0.6666666667` | |
|
`r_(12)=q_1^T * a_2` | = | [ | `0.3333333333` | `0.6666666667` | `0.6666666667` | ] |
| `xx` | | `=2` |
`q_2'` | `=a_2-r_(12) * q_1` | = | | `-2` | | `0.3333333333` | | | `0.6666666667` | | | `0.6666666667` | |
|
| = | | `-4.6666666667` | | | `1.6666666667` | | | `0.6666666667` | |
|
`r_(22)=||q_2'||=sqrt((-4.6666666667)^2+(1.6666666667)^2+(0.6666666667)^2)=sqrt(25)=5` `q_2 = 1/(||q_2'||) * q_2'` | = | `1/5 * ` | | `-4.6666666667` | | | `1.6666666667` | | | `0.6666666667` | |
| = | | `-0.9333333333` | | | `0.3333333333` | | | `0.1333333333` | |
|
`Q` | `=[q_1,q_2]` | = | | `0.3333333333` | `-0.9333333333` | | | `0.6666666667` | `0.3333333333` | | | `0.6666666667` | `0.1333333333` | |
|
`R` | = | | `r_(11)` | `r_(12)` | | | `0` | `r_(22)` | |
| = | |
checking `Q xx R = A?` `Q xx R` | = | | `0.3333333333` | `-0.9333333333` | | | `0.6666666667` | `0.3333333333` | | | `0.6666666667` | `0.1333333333` | |
| `xx` | | = | |
Solution is possible.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
2. Example `[[3,2,4],[2,0,2],[4,2,3]]` (Previous example) | 4. Example `[[1,2,4],[0,0,5],[0,3,6]]` (Next example) |
|
|
|
|
Share this solution or page with your friends.
|
|
|
|